OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 27 — Sep. 20, 2004
  • pp: 5236–5242

Efficient, reliable, long-lifetime, diode-pumped Nd:YAG laser for space-based vegetation topographical altimetry

Donald B. Coyle, Richard B. Kay, Paul R. Stysley, and Demetrios Poulios  »View Author Affiliations

Applied Optics, Vol. 43, Issue 27, pp. 5236-5242 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1004 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A highly efficient, diode-pumped, Nd:YAG laser is described. The oscillator utilizes an unstable resonator design with a Gaussian reflectivity output coupler and a side-pumped zigzag slab gain medium. The laser produces 18-mJ, 10-ns pulses at a repetition rate of 242 Hz in a near-TEM00 mode with an optical efficiency of up to 14%. An extended performance test was recently concluded in which the transmitter operated at reduced output for more than 4.8 × 109 shots with no optical damage. Design criteria, beam quality, and lifetime data are presented.

© 2004 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3540) Lasers and laser optics : Lasers, Q-switched
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5560) Lasers and laser optics : Pumping
(140.6810) Lasers and laser optics : Thermal effects
(280.3640) Remote sensing and sensors : Lidar

Original Manuscript: February 13, 2004
Revised Manuscript: June 16, 2004
Manuscript Accepted: June 21, 2004
Published: September 20, 2004

Donald B. Coyle, Richard B. Kay, Paul R. Stysley, and Demetrios Poulios, "Efficient, reliable, long-lifetime, diode-pumped Nd:YAG laser for space-based vegetation topographical altimetry," Appl. Opt. 43, 5236-5242 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. B. Coyle, R. B. Kay, S. J. Lindauer, “Design and performance of the vegetation canopy lidar (VCL) laser transmitter,” in Aerospace Conference Proceedings (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 3, pp. 1457–1464.
  2. J. B. Abshire, J. C. Smith, B. E. Schutz, “Geoscience Laser Altimeter System (GLAS),” in 17th International Laser Radar Conference (Sendi, Japan, 1994); see also http://glas.gsfc.nasa.gov/ .
  3. J. B. Blair, M. A. Hofton, “Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data,” Geophys. Res. Lett. 26, 2509–2512 (1999). [CrossRef]
  4. T. J. Kane, R. C. Eckardt, R. L. Byer, “Reduced thermal focusing and birefringence in zig-zag slab geometry crystalline lasers,” IEEE J. Quantum Electron. 19, 1351–1354 (1983). [CrossRef]
  5. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser-part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984). [CrossRef]
  6. E. Armandillo, C. Norrie, A. Cosentino, P. Laporta, P. Wazen, P. Maine, “Diode-pumped high efficiency high-brightness Q-switched Nd:YAG slab laser,” Opt. Lett. 22, 1168–1170 (1997). [CrossRef] [PubMed]
  7. R. S. Afzal, “Mars observer laser altimeter-laser transmitter,” App. Opt. 33, 3184–3188 (1994). [CrossRef]
  8. R. S. Afzal, A. W. Yu, J. J. Zayhowski, T. Y. Fan, “Single-mode high-peak-power passively Q-switched diode-pumped Nd:YAG laser,” Opt. Lett. 22, 1314–1316 (1997). [CrossRef]
  9. D. B. Coyle, “Injection seeded, diode-pumped, short pulse Nd:YAG ring laser for space based laser ranging,” Ph.d. Dissertation (American University, Washington, D.C., 1992).
  10. T. Y. Fan, R. L. Byer, “Diode laser-pumped solid state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988). [CrossRef]
  11. W. Koechner, Solid-State Laser Engineering (Springer, New York, 1999). [CrossRef]
  12. B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, “Efficient, frequency-stable laser-diode-pumped Nd:YAG laser,” Opt. Lett. 10, 62–64 (1985). [CrossRef] [PubMed]
  13. A. E. Siegman, “Unstable optical resonators for laser applications,” Proc. IEEE 53, 277–287 (1965). [CrossRef]
  14. S. De Silvestri, P. Laporta, M. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988). [CrossRef]
  15. M. Morin, “Graded reflectivity mirror unstable laser resonators,” Opt. Quantum Electron. 29, 819–866 (1997). [CrossRef]
  16. M. Morin, National Optics Institute, 369 Franquet, Saint-Foy, Quebec, Canada G1P 4N8, (personal communication, 1998).
  17. J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE J. Quantum Electron. 25, 214–220 (1989). [CrossRef]
  18. D. B. Coyle, D. V. Guerra, R. B. Kay, “An interactive numerical model of diode-pumped, Q-switched/cavity dumped lasers,” J. Appl. Phys. 28, 452–462 (1995).
  19. W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. 5, 575–86 (1969). [CrossRef]
  20. paraxia is a general laser beam propagation and laser resonator analysis program. See http://www.sciopt.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited