OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 27 — Sep. 20, 2004
  • pp: 5243–5250

Spatial and Temporal Dependence of Interspark Interactions in Femtosecond-Nanosecond Dual-Pulse Laser-Induced Breakdown Spectroscopy

Jon Scaffidi, William Pearman, Marion Lawrence, J. Chance Carter, Bill W. Colston Jr., and S. Michael Angel  »View Author Affiliations


Applied Optics, Vol. 43, Issue 27, pp. 5243-5250 (2004)
http://dx.doi.org/10.1364/AO.43.005243


View Full Text Article

Acrobat PDF (199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A femtosecond air spark has recently been combined with a nanosecond ablative pulse in order to map the spatial and temporal interactions of the two plasmas in femtosecond-nanosecond orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS). Good spatial and temporal correlation was found for reduced atomic emission from atmospheric species (nitrogen and oxygen) and increased atomic emission from ablated species (copper and aluminum) in the femtosecond-nanosecond plasma, suggesting a potential role for atmospheric pressure or nitrogen/oxygen concentration reduction following air spark formation in generating atomic emission enhancements in dual-pulse LIBS.

© 2004 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.2140) Spectroscopy : Emission
(300.6210) Spectroscopy : Spectroscopy, atomic

Citation
Jon Scaffidi, William Pearman, Marion Lawrence, J. Chance Carter, Bill W. Colston Jr., and S. Michael Angel, "Spatial and Temporal Dependence of Interspark Interactions in Femtosecond-Nanosecond Dual-Pulse Laser-Induced Breakdown Spectroscopy," Appl. Opt. 43, 5243-5250 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-27-5243


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. Brech and L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).
  2. L. J. Radziemski and D. A. Cremers, eds, Laser-induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  3. V. Majidi and M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
  4. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
  5. D. Anglos, “Laser-induced breakdown spectroscopy in art and archaeology,” Appl. Spectrosc. 55, 186A–205A (2001).
  6. K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, and D. Anglos, “The application of LIBS for the analysis of archaeological ceramic and metal artifacts,” Appl. Surf. Sci. 197, 156–163 (2002).
  7. K. L. Eland, D. N. Stratis, J. C. Carter, and S. M. Angel, “The development of a dual-pulse fiber-optics LIBS probe for in-situ elemental analysis,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh and R. Spellicy, eds., Proc. SPIE 3853, 288–294 (1999).
  8. L. Dudreagne, P. Adam, and J. Amoroux, “Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air,” Appl. Spectrosc. 52, 1321–1327 (1998).
  9. J. Gruber, J. Heitz, H. Strasser, D. Bauerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 56, 685–693 (2001).
  10. A. K. Rai, F. Y. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Optics 42, 2078–2084 (2003).
  11. B. J. Marquardt, S. R. Goode, and S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
  12. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta Part B 56, 777–793 (2001).
  13. C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 50, 1059–1075 (1995).
  14. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
  15. J. R. Wachter and D. A. Cremers, “Determination of uranium in solution using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987).
  16. H. Wiggenhauser, D. Schaurich, and G. Wilsch, “LIBS for non-destructive testing of element distributions on surfaces,” NDT & E Int. 31, 307–313 (1998).
  17. M. F. Bustamante, C. A. Rinaldi, and J. C. Ferrero, “Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile,” Spectrochim. Acta Part B 57, 303–309 (2002).
  18. C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).
  19. Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, and J. Sneddon, “Interaction of an excimer-laser beam with metals: Part III: the effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1597–1604 (1992).
  20. Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, and J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
  21. H. Matsuta and K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
  22. M. Tran, Q. Sun, B. W. Smith, and J. D. Winefordner, “Determination of F, Cl and Br in solid organic compounds by laser-induced plasma spectroscopy,” Appl. Spectrosc. 55, 739–1461 (2001).
  23. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
  24. K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
  25. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta Part B 55, 1771–1785 (2000).
  26. R. E. Russo, X. Mao, and S. S. Mao, “The physics of laser ablation in microchemical analysis,” Anal. Chem. 74, 70A–77A (2002).
  27. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
  28. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
  29. L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta Part B 57, 121–135 (2002).
  30. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
  31. D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
  32. D. N. Stratis, K. L. Eland, and S. M. Angel, “Enhancement of aluminium, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
  33. D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
  34. J. Scaffidi, J. Pender, B. Pearman, S. R. Goode, B. W. Colston Jr., J. C. Carter, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
  35. A. Sullivan, J. Bonlie, D. F. Price, and W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt Lett. 21, 603–605 (1996).
  36. M. Gatti, V. Palleschi, A. Salvetti, D. P. Singh, and M. Vaselli, “Spherical shock waves in laser produced plasmas in gas,” Opt. Commun. 69, 141–146 (1988).
  37. M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. Tropiano, and M. Vaselli, “Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography,” Opt. Commun. 71, 76–80 (1989).
  38. A. D. Zweig and T. F. Deutsch, “Shock waves generated by confined XeCl excimer laser ablation of polyimide,” Appl. Phys. B 54, 76–82 (1992).
  39. D. Devaux, R. Fabbro, L. Tollier, and E. Bartnicki, “Generation of shock waves by laser-induced plasma in confined geometry,” J. Appl. Phys 74, 2268–2273 (1993).
  40. A. M. Azzeer, A. S. Al-Dwayyan, M. S. Al-Salhi, A. M. Kamal, M. A. Harith, “Optical probing of laser-induced shock waves in air,” Appl. Phys. B 63, 307–310 (1996).
  41. A. Olmes, S. Lohmann, H. Lubatschowski, and W. Ertmer, “An improved method of measuring laser induced pressure transients,” Appl. Phys. B 64, 677–682 (1997).
  42. W. S. Budi, H. Suyanto, H. Kurniawan, M. O. Tjia, and K. Kagawa, “Shock excitation and cooling stage in the laser plasma induced by a Q-switched Nd:YAG laser at low pressures,” Appl. Spectrosc. 53, 719–730 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited