OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 28 — Oct. 1, 2004
  • pp: 5343–5349

Enhanced birefringence in vacuum evaporated silicon thin films

Gisia Beydaghyan, Kate Kaminska, Tim Brown, and Kevin Robbie  »View Author Affiliations

Applied Optics, Vol. 43, Issue 28, pp. 5343-5349 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (777 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report an experimental study of enhanced optical birefringence in silicon thin films on glass substrates. Form anisotropy is introduced as an atomic-scale morphological structure through dynamic control of growth geometry. The resulting birefringence is large compared with naturally anisotropic crystals and is comparable to two-dimensional photonic crystals. The films are fabricated with serial bideposition onto a substrate held at a fixed tilt angle relative to the impinging vapor. Films were analyzed by spectroscopic ellipsometry and scanning electron microscopy, the latter clearly revealing form anisotropy in a morphology of bunched columns perpendicular to the deposition plane with dimensions of hundreds of nanometers and smaller. The observed linear birefringence varies with wavelength and tilt angle, with a maximum of 0.4 at a 630-nm wavelength and 0.25 at 1500 nm.

© 2004 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(260.1440) Physical optics : Birefringence
(260.2130) Physical optics : Ellipsometry and polarimetry
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties

Original Manuscript: November 11, 2003
Revised Manuscript: June 22, 2004
Published: October 1, 2004

Gisia Beydaghyan, Kate Kaminska, Tim Brown, and Kevin Robbie, "Enhanced birefringence in vacuum evaporated silicon thin films," Appl. Opt. 43, 5343-5349 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Hodgkinson, Q. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1998). [CrossRef]
  2. I. Hodgkinson, Q. H. Wu, “Vacuum deposited biaxial thin films with all principal axes inclined to the substrate,” J. Vac. Sci. Technol. A 17, 2928–2932 (1999). [CrossRef]
  3. I. Hodgkinson, Q. H. Wu, “Serial bideposition of anisotropic thin films with enhanced linear birefringence,” Appl. Opt. 38, 3621–3625 (1999). [CrossRef]
  4. S. Leonard, H. van Driel, A. Birner, U. Gosele, P. Villeneuve, “Single-mode transmission in two-dimensional macroporous silicon photonic crystal waveguides,” Opt. Lett. 25, 1550–1552 (2000). [CrossRef]
  5. S. John, M. Florescu, “Photonic bandgap materials: towards an all optical micro-transistor,” J. Opt. 3, S103–S120 (2001).
  6. K. Robbie, M. Brett, “Sculptured thin films and glancing angle deposition: growth mechanics and applications,” J. Vac. Sci. Technol. A 15, 1460–1465 (1997). [CrossRef]
  7. I. Hodgkinson, Q. H. Wu, J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998). [CrossRef]
  8. T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989). [CrossRef] [PubMed]
  9. M. Suzuki, Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys. 71, 2448–2454 (1992).
  10. A. Zuber, H. Jänchen, N. Kaiser, “Perpendicular-incidence photometric ellipsometry of biaxial anisotropic thin films,” Appl. Opt. 35, 5553–5556 (1996). [CrossRef] [PubMed]
  11. I. Hodgkinson, Q. Wu, B. Knight, A. Lakhtakia, K. Robbie, “Vacuum deposition of chiral sculptured thin films with high optical activity,” Appl. Opt. 39, 642–649 (2000). [CrossRef]
  12. K. Robbie, L. Friedrich, S. Dew, T. Smy, M. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995). [CrossRef]
  13. K. Robbie, M. Brett, D. Broer, “Chiral thin film/liquid crystal hybrid materials,” Nature (London) 399, 764–766 (1999). [CrossRef]
  14. K. Kuwahara, J. Hirota, “Resistivity anisotropy in oblique incidence evaporated films,” Jpn. J. Appl. Phys. 13, 1093–1095 (1974). [CrossRef]
  15. H. van Kranenburg, C. Lodder, “Tailoring growth and local composition by oblique-incidence deposition: a review and some new experimental data,” Mater. Sci. Eng. R 11, 295–354 (1994). [CrossRef]
  16. M. Cohen, “Anisotropy in permalloy films evaporated at grazing incidence,” J. Appl. Phys. 32, 875–885 (1961). [CrossRef]
  17. R. Messier, A. Giri, R. Roy, “Revised structure zone models for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500–503 (1984). [CrossRef]
  18. K. Robbie, J. Sit, M. Brett, “Advanced techniques for glancing angle deposition (GLAD),” J. Vac. Sci. Technol. B 16, 1115–1122 (1998). [CrossRef]
  19. H. Tompkins, W. McGahan, Spectroscopic Ellipsometry and Reflectometry (Wiley, New York, 1999).
  20. B. Johs, J. Hale, N. Ianno, G. Herzinger, T. Tiwald, J. Woollam, “Recent developments in spectroscopic ellipsometry for in-situ applications,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, A. Duparre, B. Singh, eds., Proc. SPIE4449, 41–57 (2001). [CrossRef]
  21. D. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys. (Leipzig) 24, 635–679 (1935).
  22. G. Smith, “Effective medium theory and angular dispersion of optical constants in films with oblique columnar structure,” Opt. Commun. 71, 279–284 (1989). [CrossRef]
  23. R. Tait, T. Smy, M. Brett, “Modelling and characterization of columnar growth in evaporated films,” Thin Solid Films 226, 196–201 (1993). [CrossRef]
  24. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, C. E. Lyman, C. Fiori, E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited