OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 28 — Oct. 1, 2004
  • pp: 5370–5385

Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio

Gelsomina Pappalardo, Aldo Amodeo, Marco Pandolfi, Ulla Wandinger, Albert Ansmann, Jens Bösenberg, Volker Matthias, Vassilis Amiridis, Ferdinando De Tomasi, Max Frioud, Marco Iarlori, Leonce Komguem, Alexandros Papayannis, Francesc Rocadenbosch, and Xuan Wang  »View Author Affiliations


Applied Optics, Vol. 43, Issue 28, pp. 5370-5385 (2004)
http://dx.doi.org/10.1364/AO.43.005370


View Full Text Article

Enhanced HTML    Acrobat PDF (405 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An intercomparison of the algorithms used to retrieve aerosol extinction and backscatter starting from Raman lidar signals has been performed by 11 groups of lidar scientists involved in the European Aerosol Research Lidar Network (EARLINET). This intercomparison is part of an extended quality assurance program performed on aerosol lidars in the EARLINET. Lidar instruments and aerosol backscatter algorithms were tested separately. The Raman lidar algorithms were tested by use of synthetic lidar data, simulated at 355, 532, 386, and 607 nm, with realistic experimental and atmospheric conditions taken into account. The intercomparison demonstrates that the data-handling procedures used by all the lidar groups provide satisfactory results. Extinction profiles show mean deviations from the correct solution within 10% in the planetary boundary layer (PBL), and backscatter profiles, retrieved by use of algorithms based on the combined Raman elastic-backscatter lidar technique, show mean deviations from solutions within 20% up to 2 km. The intercomparison was also carried out for the lidar ratio and produced profiles that show a mean deviation from the solution within 20% in the PBL. The mean value of this parameter was also calculated within a lofted aerosol layer at higher altitudes that is representative of typical layers related to special events such as Saharan dust outbreaks, forest fires, and volcanic eruptions. Here deviations were within 15%.

© 2004 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1100) Remote sensing and sensors : Aerosol detection
(290.1090) Scattering : Aerosol and cloud effects
(290.2200) Scattering : Extinction
(290.5860) Scattering : Scattering, Raman

History
Original Manuscript: November 30, 2003
Revised Manuscript: May 20, 2004
Published: October 1, 2004

Citation
Gelsomina Pappalardo, Aldo Amodeo, Marco Pandolfi, Ulla Wandinger, Albert Ansmann, Jens Bösenberg, Volker Matthias, Vassilis Amiridis, Ferdinando De Tomasi, Max Frioud, Marco Iarlori, Leonce Komguem, Alexandros Papayannis, Francesc Rocadenbosch, and Xuan Wang, "Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio," Appl. Opt. 43, 5370-5385 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-28-5370

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited