OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 28 — Oct. 1, 2004
  • pp: 5370–5385

Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio

Gelsomina Pappalardo, Aldo Amodeo, Marco Pandolfi, Ulla Wandinger, Albert Ansmann, Jens Bösenberg, Volker Matthias, Vassilis Amiridis, Ferdinando De Tomasi, Max Frioud, Marco Iarlori, Leonce Komguem, Alexandros Papayannis, Francesc Rocadenbosch, and Xuan Wang  »View Author Affiliations


Applied Optics, Vol. 43, Issue 28, pp. 5370-5385 (2004)
http://dx.doi.org/10.1364/AO.43.005370


View Full Text Article

Enhanced HTML    Acrobat PDF (405 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An intercomparison of the algorithms used to retrieve aerosol extinction and backscatter starting from Raman lidar signals has been performed by 11 groups of lidar scientists involved in the European Aerosol Research Lidar Network (EARLINET). This intercomparison is part of an extended quality assurance program performed on aerosol lidars in the EARLINET. Lidar instruments and aerosol backscatter algorithms were tested separately. The Raman lidar algorithms were tested by use of synthetic lidar data, simulated at 355, 532, 386, and 607 nm, with realistic experimental and atmospheric conditions taken into account. The intercomparison demonstrates that the data-handling procedures used by all the lidar groups provide satisfactory results. Extinction profiles show mean deviations from the correct solution within 10% in the planetary boundary layer (PBL), and backscatter profiles, retrieved by use of algorithms based on the combined Raman elastic-backscatter lidar technique, show mean deviations from solutions within 20% up to 2 km. The intercomparison was also carried out for the lidar ratio and produced profiles that show a mean deviation from the solution within 20% in the PBL. The mean value of this parameter was also calculated within a lofted aerosol layer at higher altitudes that is representative of typical layers related to special events such as Saharan dust outbreaks, forest fires, and volcanic eruptions. Here deviations were within 15%.

© 2004 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1100) Remote sensing and sensors : Aerosol detection
(290.1090) Scattering : Aerosol and cloud effects
(290.2200) Scattering : Extinction
(290.5860) Scattering : Scattering, Raman

History
Original Manuscript: November 30, 2003
Revised Manuscript: May 20, 2004
Published: October 1, 2004

Citation
Gelsomina Pappalardo, Aldo Amodeo, Marco Pandolfi, Ulla Wandinger, Albert Ansmann, Jens Bösenberg, Volker Matthias, Vassilis Amiridis, Ferdinando De Tomasi, Max Frioud, Marco Iarlori, Leonce Komguem, Alexandros Papayannis, Francesc Rocadenbosch, and Xuan Wang, "Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio," Appl. Opt. 43, 5370-5385 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-28-5370


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. A. Ackermann, H. Chung, “Radiative effects of airborne dust and regional energy budget at the top of the atmosphere,” J. Appl. Meteorol. 31, 223–236 (1992). [CrossRef]
  2. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, D. Xiaosu, Climate Change 2001: The Scientific Basis, contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge U. Press, Cambridge, 2001).
  3. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Editions de L’Ecole polytechnique, Palaiseau Cedex, France, 2001), pp. 155–158.
  4. J. Bösenberg, V. Matthias, A. Amodeo, V. Amoridis, A. Ansmann, J. M. Baldasano, I. Balin, D. Balis, C. Böckmann, A. Boselli, G. Carlsson, A. Chaikovsky, G. Chourdakis, A. Comeron, F. De Tomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linné, R. Matthey, I. Mattis, A. Mekler, I. Mironova, V. Mitev, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Pérez, R. M. Perrone, R. Persson, D. P. Resendes, V. Rizi, F. Rocadenbosch, J. A. Rodrigues, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewski, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, C. Zerefos, “EARLINET: a European aerosol research lidar network to establish an aerosol climatology,” Rep. 348 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2003), http://lidarb.dkrz.de/earlinet/ .
  5. V. Matthias, J. Bösenberg, V. Freudenthaler, A. Amodeo, D. Balis, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, I. Mattis, V. Rizi, J. A. Rodriguez, V. Simeonov, X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43, 961–976 (2004). [CrossRef]
  6. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadembosch, J. A. Rodriguez, J. Schneider, V. Shcherbakov, M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977–989 (2004). [CrossRef] [PubMed]
  7. A. Ansmann, M. Riebesell, C. Weitkamp, “Measurement of atmospheric aerosol extinction profiles with a Raman lidar,” Opt. Lett. 15, 746–748 (1990). [CrossRef] [PubMed]
  8. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of the extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef]
  9. R. T. H. Collis, P. B. Russell, “Lidar measurement of particles and gases by elastic backscattering and differential absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, ed. (Springer-Verlag, Berlin, 1976), pp. 71–151. [CrossRef]
  10. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “A high spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. I. Instrumentation and theory,” Appl. Opt. 23, 3716–3724 (1983). [CrossRef]
  11. D. Gutkowicz-Krusin, “Multiangle lidar performance in the presence of horizontal inhomogeneities in atmospheric extinction and scattering,” Appl. Opt. 32, 3266–3272 (1993). [CrossRef] [PubMed]
  12. M. Sicard, P. Chazette, J. Pelon, J. G. Won, S.-C. Yoon, “Variational method for the retrieval of the optical thickness and backscatter coefficient from multiangle lidar profiles,” Appl. Opt. 41, 493–502 (2002). [CrossRef] [PubMed]
  13. J. A. Reagan, D. M. Byrne, M. D. King, J. D. Spinhirne, B. M. Herman, “Determination of the complex refractive index and size distribution of atmospheric particulates from bistatic-monostatic lidar and solar radiometer measurements,” J. Geophys. Res. 85, 1591–1599 (1980). [CrossRef]
  14. D. D. Turner, R. A. Ferrare, L. A. H. Brasseur, W. F. Feltz, “Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar,” J. Atmos. Ocean. Technol. 19, 37–50 (2002). [CrossRef]
  15. A. Amodeo, G. Pappalardo, U. Wandinger, V. Matthias, J. Bösenberg, M. Alpers, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, G. Larchevêque, A. Papayannis, X. Wang, “Raman lidar algorithm intercomparison in the frame of EARLINET,” in Proceedings of XXI International Laser Radar Conference—Part I (Defence RD Canada-Valcartier, Val-Bélair, Canada, 2002), pp. 349–352.
  16. R. M. Measures, Laser Remote Sensing: Fundamentals and Application (Wiley, New York, 1984).
  17. J. A. Cooney, “Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter,” J. Appl. Meteorol. 9, 182–184 (1970). [CrossRef]
  18. S. H. Melfi, J. D. Lawrence, M. P. McCormick, “Observation of Raman scattering by water vapor in the atmosphere,” Appl. Phys. Lett. 15, 295–297 (1969). [CrossRef]
  19. D. A. Leonard, B. Caputo, “A single-ended atmospheric transmissometer,” Opt. Eng. 13, 10–14 (1974). [CrossRef]
  20. G. Pappalardo, J. Bösenberg, D. Balis, A. Boselli, L. Komguem, G. Larchevêque, V. Matthias, L. Mona, I. Mattis, A. Papayannis, M. R. Perrone, V. Rizi, “EARLINET measurements of the aerosol extinction-to-backscatter ratio,” in Proceedings of XXI International Laser Radar Conference—Part I (Defence RD Canada-Valcartier, Val-Bélair, Canada, 2002), pp. 301–304.
  21. J. A. Cooney, J. Orr, C. Tomasetti, “Measurements separating the gaseous and aerosol components of laser atmospheric backscattering,” Nature 224, 1098–1099 (1969). [CrossRef]
  22. S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972). [CrossRef] [PubMed]
  23. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosol in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef] [PubMed]
  24. J. F. Kaiser, W. A. Reed, “Data smoothing using low-pass digital filters,” Rev. Sci. Instrum. 48, 1447–1457 (1977). [CrossRef]
  25. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in fortran: The Art of Scientific Computing, 2nd ed. (Cambridge, U. Press, Cambridge, 1992), pp. 127–128 and 644–647.
  26. D. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999). [CrossRef]
  27. D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42, 2571–2592 (2003). [CrossRef] [PubMed]
  28. D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993). [CrossRef]
  29. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992). [CrossRef]
  30. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, M. Poellot, Y. J. Kaufman, “Raman lidar measurements of aerosol extinction and backscattering. 2. Derivation of aerosol real refractive index, single scattering albedo, and humidification factor using Raman lidar and aircraft size distribution measurements,” J. Geophys. Res. 103, 19673–19689 (1998). [CrossRef]
  31. R. A. Ferrare, D. D. Turner, L. A. Heilman, W. F. Feltz, O. Dubovik, T. P. Tooman, “Raman lidar measurements of aerosol extinction-to-backscatter ratio over southern Great Plains,” J. Geophys. Res. 106, 20333–20348 (2001). [CrossRef]
  32. U. Wandinger, “Multiple-scattering influence on extinction and backscatter coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998). [CrossRef]
  33. J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998). [CrossRef]
  34. D. N. Stacey, “Rayleigh’s legacy to modern physics: high resolution spectroscopy,” Eur. J. Phys. 15, 236–242 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited