OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 28 — Oct. 1, 2004
  • pp: 5394–5398

Three- and four-photon absorption of a multiphoton absorbing fluorescent probe

Florencio E. Hernández, Kevin D. Belfield, Ion Cohanoschi, Mihaela Balu, and Katherine J. Schafer  »View Author Affiliations

Applied Optics, Vol. 43, Issue 28, pp. 5394-5398 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (194 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-order multiphoton excitation processes are becoming a reality for fluorescence imaging and phototherapy treatment because they afford minimization of scattered light losses and a reduction of unwanted linear absorption in the living organism transparency window, making them less susceptible to photodamage, while improving the irradiation penetration depth and spatial resolution. We report the four-photon-excited fluorescence emission of (7-benzothiazol-2-yl-9,-didecylfluoren-2-yl)-diphenylamine in hexane and its four-photon absorption cross section σ4′ = 8.1 × 10-109 cm8 s3 photon-3 for the transition S0 → S1 when excited at 1600 nm with a tunable optical parametric generator (OPG) pumped by picosecond laser pulses. When pumped at 1200 nm, three-photon absorption was observed, corresponding to the same transition.

© 2004 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(190.4180) Nonlinear optics : Multiphoton processes
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6410) Spectroscopy : Spectroscopy, multiphoton

Original Manuscript: September 15, 2003
Revised Manuscript: March 10, 2004
Published: October 1, 2004

Florencio E. Hernández, Kevin D. Belfield, Ion Cohanoschi, Mihaela Balu, and Katherine J. Schafer, "Three- and four-photon absorption of a multiphoton absorbing fluorescent probe," Appl. Opt. 43, 5394-5398 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Goeppert-Mayer, “Uber Elementarakte mit zwei quantensprungen,” Ann. Physik. 9, 273–294 (1931). [CrossRef]
  2. D. A. Parthenopoulos, P. M. Rentzepis, “3D optical storage memory,” Science 245, 843–845 (1989). [CrossRef] [PubMed]
  3. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  4. G. S. He, J. D. Bhawalkar, C. F. Zao, P. N. Prasad, “Optical limiting effect in a two-photon absorption dye doped solid matrix,” Appl. Phys. Lett. 67, 2433–2435 (1995). [CrossRef]
  5. J. W. Perry, K. Mansour, J. Y. S. Lee, X. L. Xu, P. V. Bedwhorth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, H. Sasabe, “Organic optical limiter with a strong nonlinear absorptive response,” Science 273, 1533–1536 (1996). [CrossRef]
  6. M. Albota, D. Beljnne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, “Design of organic molecules with large two-photon absorption cross sections,” Science 281, 1653–1656 (1998). [CrossRef] [PubMed]
  7. S. P. Schilders, M. Gu, “Three-dimensional autofluorescence spectroscopy of rat skeletal muscle tissue under two-photon excitation,” Appl. Opt. 38, 720–723 (1999). [CrossRef]
  8. J. M. Squirel, D. L. Wokosin, J. G. White, B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nature Biotechnology 17, 763–767 (1999). [CrossRef]
  9. L. Moreaux, O. Sandre, M. Blanchard-Desce, J. Mertz, “Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy,” Opt. Lett. 25, 320–322 (2000). [CrossRef]
  10. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003). [CrossRef] [PubMed]
  11. D. M. Friedrich, “Tensor pattern and polarization ratios for three-photon transitions in fluid media,” J. Chem. Phys. 75, 3258–3268 (1981). [CrossRef]
  12. S. G. He, J. D. Bhawalkar, P. N. Prasad, “Three-photon-absorption-induced fluorescence and optical limiting effects in an organic compound,” Opt. Lett. 20, 1524–1526 (1995). [CrossRef] [PubMed]
  13. G. Zhou, X. Wang, D. Wang, Z. Shao, M. Jiang, “Upconversion fluorescence and optical power limiting effects based on the two- and three-photon absorption process of a new organic dye BPAS,” Appl. Opt. 41, 1120–1123 (2000). [CrossRef]
  14. M. Gu, “Resolution in three-photon fluorescence scanning microscopy,” Opt. Lett. 21, 988–990 (1996). [CrossRef] [PubMed]
  15. S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, “Three-photon excitation in fluorescence microscopy,” J. Biomed. Opt. 1, 71–74 (1996). [CrossRef] [PubMed]
  16. I. Gryczynski, J. R. LaKowicz, I. Gryczynski, H. Malak, M. Schrader, P. Engelhardt, H. Kano, S. W. Hell, “Time-resolved fluorescence spectroscopy and imaging of DNA labeled with DAIP and Hoechst 33342 using three-photon excitation,” Biophys. J. 72, 567–578 (1997). [CrossRef]
  17. I. Gryczynski, H. Szmacinski, J. R. LaKowicz, “Three-photon induced fluorescence of calcium probe Indo-1,” Biophys. J. 70, 547–555 (1996). [CrossRef]
  18. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530–532 (1997). [CrossRef] [PubMed]
  19. R. Naskrecki, M. Menard, P. Van der Meulen, G. Vigneron, S. Pommeret, “Three-photon absorption cross-section of simple molecules,” Opt. Commun. 153, 32–38 (1998). [CrossRef]
  20. G. S. He, P. P. Markowics, T. Lin, P. N. Prasad, “Observation of stimulated emission by direct three-photon excitation,” Nature 415, 767–770 (2002). [CrossRef] [PubMed]
  21. F. Pradere, J. Hanus, M. Chott, “Multiple photon absorption in naphthalene crystals. Ratio of the probabilities of processes involving two, three, and four photons,” C. R. Acad. Sci. Ser. A 263A, 372–375 (1966).
  22. R. Patell, F. Pradere, J. Hanus, M. Schott, H. Puthoff, “Theoretical and experimental values for two-, three-, and four-photon absorption,” J. Chem. Phys. 46, 3507–3511 (1967). [CrossRef]
  23. V. Nathan, A. H. Guenter, S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” JOSA B 2, 294–316 (1985). [CrossRef]
  24. I. M. Catalano, A. Cingolani, A. Mafra, “Four-photon transitions in ZnS,” Solid State Commun. 16, 1109–1111 (1975). [CrossRef]
  25. F. Yoshimo, S. Polyakov, L. Friedrich, M. Liu, H. Shim, G. I. Stegeman, “Multi-photon effects in the polydiacetylene poly bis(p-toluene sulfonate) of 2,4-hexadiyne-1,6,-diol (PTS),” J. Nonlinear Opt. Phys. Mater. 9, 95–104 (2000). [CrossRef]
  26. I. Gryczynski, G. Piszczek, Z. Gryczynski, J. R. Lakowicz, “Four-photon excitation of 2,2′-Dimethyl-p-terphenyl,” J. Phys. Chem. 106, 754–759 (2002). [CrossRef]
  27. K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Steady-state and spectroscopic lifetime measurements on new two-photon absorbing fluorene derivatives,” J. Fluoresc. 12, 445–450 (2002). [CrossRef]
  28. J. M. Hales, K. J. Schafer, A. M. Morales, K. D. Belfield, D. J. Hagan, E. W. Stryland, “Nonlinear optical spectroscopic characterization of a series of fluorene derivatives,” in Nonlinear Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 21–30 (2003). [CrossRef]
  29. K. D. Belfield, K. J. Schafer, W. Mourad, “Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensation,” J. Org. Chem. 65, 4475–4481 (2002). [CrossRef]
  30. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  31. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chaps. 4 and 8.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited