OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 28 — Oct. 1, 2004
  • pp: 5404–5409

Changes in the luminescence between dried and wet bacillus spores

Joseph Kunnil, Barry Swartz, and Lou Reinisch  »View Author Affiliations

Applied Optics, Vol. 43, Issue 28, pp. 5404-5409 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1210 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence has been suggested as a method with which to detect and identify bacterial spores. To better understand the nature of the fluorescence signal, we observed the intrinsic steady-state fluorescence and phosphorescence spectra of Bacillus globigii (BG) in both dried and aqueous forms. In vitro, dried, and suspension forms of BG were measured at room temperature in 300–600-nm excitation wavelengths. Also, the phosphorescence of dry BG spores was measured at room temperature at 300–600-nm excitation wavelengths. The wet BG spores exhibited a strong maximum in their fluorescence spectrum, with the peak excitation wavelength near 300 nm and emission wavelength near 400 nm. When the BG was dried, this peak shifted to an approximately 450-nm excitation maximum and an 500-nm emission maximum. The difference between the wet and the dry spore fluorescence spectra cannot be explained by the phosphorescence of the dry spores. Other changes must take place when the spores are wet to account for the large changes observed in the spectrum.

© 2004 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Original Manuscript: January 4, 2004
Revised Manuscript: May 11, 2004
Published: October 1, 2004

Joseph Kunnil, Barry Swartz, and Lou Reinisch, "Changes in the luminescence between dried and wet bacillus spores," Appl. Opt. 43, 5404-5409 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Coburn, F. E. Lytle, D. M. Huber, “Identification of bacterial pathogens by laser excited fluorescence,” Anal. Chem. 57, 1669–1673 (1985). [CrossRef]
  2. T. M. Rossi, I. M. Warner, “Pattern-recognition of two-dimensional fluorescence data using cross-correlation analysis,” Appl. Spectrosc. 39, 949–959 (1985). [CrossRef]
  3. L. Reinisch, J. Tribble, J. A. Werkhaven, R. H. Ossoff, “Non-invasive optical diagnosis of bacteria causing otitis media,” Laryngoscope 104, 264–268 (1994).
  4. M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, R. H. Ossoff, “Bacteria identification of otitis media with fluorescence spectroscopy,” Lasers Surg. Med. 14, 155–163 (1994). [CrossRef]
  5. B. C. Spector, L. Reinisch, D. Smith, J. A. Werkhaven, “Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model,” Laryngoscope 110, 1119–1123 (2000). [CrossRef] [PubMed]
  6. B. V. Bronk, L. Reinisch, “Variability of steady state bacterial fluorescence with respect to growth conditions,” Appl. Spectrosc. 47, 436–440 (1993). [CrossRef]
  7. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Tanguay, S. L. Suib, “Steady state and decay characteristic of protein tryptophan fluorescence from live bacteria,” Appl. Spectrosc. 40, 86–90 (1986). [CrossRef]
  8. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Sperry, J. F. Tanguay, S. L. Suib, “The steady state and decay characteristics of primary fluorescence from live bacteria,” Appl. Spectrosc. 41, 234–241 (1987). [CrossRef]
  9. I. Munro, I. Pecht, L. Stryer, “Subnanosecond motions of tryptophan residues in proteins,” Proc. Natl. Acad. Sci. USA 76, 56–60 (1979). [CrossRef] [PubMed]
  10. L. Reinisch, W. P. Van de Merwe, B. V. Bronk, “Comparative fluorescence spectra from bacteria and spores in different stages of growth,” Biophys. J. 59, 161a (1991).
  11. G. G. Guilbault, Fluorescence: Theory, Instrumentation and Practice (Marcel Dekker, New York, 1967).
  12. D. M. Hercules, Fluorescence and Phosphorescence Analysis: Principles and Applications (Interscience, New York, 1966).
  13. C. E. White, R. J. Argauer, Fluorescence Analysis: A Practical Approach (Marcel Dekker, New York, 1970).
  14. J. D. Winefordner, S. G. Schulman, T. C. O’Haver, Luminescence Spectrometry in Analytical Chemistry (Wiley/Interscience, New York, 1972).
  15. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983). [CrossRef]
  16. D. Eastwood, ed., New Directions in Molecular Luminescence, Special Tech. Publ.82 (American Society for Testing and Materials, Philadelphia, Pa., 1983).
  17. M. Gonnelli, G. B. Strambini, “Phosphorescence lifetime of tryptophan in proteins,” Biochemistry 34, 13847–13857 (1995). [CrossRef] [PubMed]
  18. G. B. Strambini, E. Gabellieri, M. Gonnelli, S. Rahuel-Clemont, G. Branlant, “Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus,” Biophys J. 74, 3165–3172 (1998). [CrossRef] [PubMed]
  19. F. W. J. Teale, G. Weber, “Ultraviolet fluorescence of the aromatic amino acids,” Biochem. J. 67, 476–482 (1957).
  20. P. Chou-pong, G. Patonay, C. W. Moss, D. Hollis, G. M. Carlone, B. D. Plikaytis, I. M. Warner, “Comparison of Flavobacterium and Sphingobacterium species by enzyme profiles, with use of pattern recognition of two dimensional fluorescence data,” Clin. Chem. 33, 377–380 (1987).
  21. A. J. Westphal, P. B. Price, T. J. Leighton, K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. USA 100, 3461–3466 (2003). [CrossRef] [PubMed]
  22. R. Neihof, J. K. Thompson, V. R. Deitz, “Sorption of water vapour and nitrogen gas by bacterial spores,” Nature 216, 1304–1306 (1967). [CrossRef] [PubMed]
  23. B. J. Marshall, W. G. Murrell, “Symposium on bacterial spores. IX. Biophysical analysis of the spore,” Appl. Bacteriol. 33, 103–129 (1970). [CrossRef]
  24. M. Paidhungat, B. Setlow, A. Driks, P. Setlow, “Characterization of spores of Bacillus subtilis which lack dipicolinc acid,” J. Bacteriol. 182, 5505–5512 (2000). [CrossRef] [PubMed]
  25. J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem. 19, 327–337 (1967). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited