OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 29 — Oct. 10, 2004
  • pp: 5468–5475

Quasi-free-space optical coupling between diffraction grating couplers fabricated on independent substrates

Anthony V. Mulé, Ricardo Villalaz, Thomas K. Gaylord, and James D. Meindl  »View Author Affiliations


Applied Optics, Vol. 43, Issue 29, pp. 5468-5475 (2004)
http://dx.doi.org/10.1364/AO.43.005468


View Full Text Article

Enhanced HTML    Acrobat PDF (1093 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coupling between preferential-order volume diffraction grating couplers fabricated on independent substrates is demonstrated. The coupling efficiency between gratings is quantified as a function of both grating and waveguide fabrication technology and relative angular position of the two substrates. A maximum grating-to-grating coupling efficiency of 31% is reported for coupling between two nonoptimized, nonfocusing, unpatterned volume grating couplers.

© 2004 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(130.2790) Integrated optics : Guided waves
(200.4650) Optics in computing : Optical interconnects
(230.7380) Optical devices : Waveguides, channeled

History
Original Manuscript: February 25, 2004
Revised Manuscript: June 29, 2004
Published: October 10, 2004

Citation
Anthony V. Mulé, Ricardo Villalaz, Thomas K. Gaylord, and James D. Meindl, "Quasi-free-space optical coupling between diffraction grating couplers fabricated on independent substrates," Appl. Opt. 43, 5468-5475 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-29-5468


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Mulé, E. N. Glytsis, T. K. Gaylord, J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 10, 582–594 (2002). [CrossRef]
  2. S. M. Garner, S.-S. Lee, V. Chuyanov, A. Chen, A. Yacoubian, W. H. Steier, L. R. Dalton, “Three-dimensional integrated optics using polymers,” IEEE J. Quantum Electron. 35, 1146–1155 (1999). [CrossRef]
  3. P. C. Noutsios, G. L. Yip, J. Albert, “Novel vertical directional coupler made by field-assisted ion-exchanged slab waveguides in glass,” Electron. Lett. 28, 1340–1342 (1992). [CrossRef]
  4. M. Raburn, B. Liu, P. Abraham, J. E. Bowers, “Double-bonded InP-InGaAsP vertical coupler 1:8 beam splitter,” IEEE Photon. Technol. Lett. 12, 1639–1641 (2000). [CrossRef]
  5. S. June Choi, K. Djordjev, S. Jun Choi, P. D. Dapkus, W. Lin, G. Griffel, R. Menna, J. Connolly, “Microring resonators vertically coupled to buried heterostructure bus waveguides,” IEEE Photon. Technol. Lett. 16, 828–830 (2004). [CrossRef]
  6. J. Link, V. Solberg, “Placement and reflow of 0.3mm diameter solder balls for chip-scale μBGA devices,” Chip Scale Rev. 1, 28–35 (1997).
  7. J. Kobayashi, T. Matsuura, S. Sasaki, T. Maruno, “Directional couplers using fluorinated polyimide waveguides,” J. Lightwave Technol. 16, 610–614 (1998). [CrossRef]
  8. T. Liang, R. W. Ziolkowski, “Grating assisted waveguide-to-waveguide couplers,” IEEE Photon. Technol. Lett. 10, 693–695 (1998). [CrossRef]
  9. Q. D. Xing, S. Ura, T. Suhara, H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997). [CrossRef]
  10. S. Ura, R. Nishida, T. Suhara, H. Nishihara, “Wavelength-selective coupling among three vertically integrated optical waveguides by grating couplers,” IEEE Photon. Technol. Lett. 13, 133–135 (2001). [CrossRef]
  11. S. M. Schultz, E. N. Glytsis, T. K. Gaylord, “Volume grating preferential-order focusing waveguide coupler,” Opt. Lett. 24, 1708–1710 (1999). [CrossRef]
  12. M. L. Jones, R. P. Kenan, C. M. Verber, “Rectangular characteristic gratings for waveguide input and output coupling,” Appl. Opt. 34, 4149–4158 (1995). [CrossRef] [PubMed]
  13. W. J. Gambogi, W. A. Gerstadt, S. R. Makara, A. M. Weber, “Holographic transmission elements using improved photopolymer films,” in Computer and Optically Generated Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1555, 256–267 (1991). [CrossRef]
  14. W. J. Gambogi, A. M. Weber, T. J. Trout, “Advances and applications of DuPont holographic photopolymers,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 2–13 (1994). [CrossRef]
  15. T. J. Trout, J. J. Schmieg, W. J. Gambogi, A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. 10, 1219–1224 (1998). [CrossRef]
  16. J. Yeh, A. Harton, K. Wyatt, “Reliability study of holographic optical elements made with DuPont photopolymer,” Appl. Opt. 37, 6270–6274 (1998). [CrossRef]
  17. M. L. Jones, “Design of normal-incidence waveguide-embedded phase gratings for optical interconnects in multi-chip modules,” Ph.D. dissertation (Georgia Institute of Technology, Atlanta, Ga., 1995).
  18. A. V. Mulé, R. Villalaz, T. K. Gaylord, J. D. Meindl, “Photopolymer-based diffractive and MMI waveguide couplers,” Photon. Technol. Lett. (to be published).
  19. W. DuMouchel, F. O’Brien, “Integrating a robust option into a multiple regression computing environment,” in Computing Science and Statistics: Proceedings of the 21st Symposium on the Interface, K. Berk, L. Malone, eds. (American Statistical Association, Alexandria, Va.1989), pp. 297–301.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited