OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 29 — Oct. 10, 2004
  • pp: 5503–5511

Characterization of atmospheric aerosols from infrared measurements: simulations, testing, and applications

Alexander Yu. Zasetsky, Alexei F. Khalizov, and James J. Sloan  »View Author Affiliations


Applied Optics, Vol. 43, Issue 29, pp. 5503-5511 (2004)
http://dx.doi.org/10.1364/AO.43.005503


View Full Text Article

Acrobat PDF (407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An inversion method for the characterization of atmospheric condensed phases from infrared (IR) spectra is described. The method is tested with both synthetic IR spectra and the spectra of particles that flow in a cryogenic flow tube. The method is applied to the IR spectra recorded by the Atmospheric Trace Molecule Spectroscopy instrument carried by the Space Shuttle during three missions in 1992, 1993, and 1994. The volume density and particle size distribution for sulfate aerosol are obtained as a function of altitude. The density and size distribution of ice particles in several cirrus clouds are also retrieved. The probable radius of the ice particles in the high-altitude (10–15-km) cirrus clouds is found to be approximately 6–7 μm.

© 2004 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.7340) Atmospheric and oceanic optics : Water
(100.3190) Image processing : Inverse problems
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors

History
Original Manuscript: October 31, 2003
Revised Manuscript: April 5, 2004
Published: October 10, 2004

Citation
Alexander Yu. Zasetsky, Alexei F. Khalizov, and James J. Sloan, "Characterization of atmospheric aerosols from infrared measurements: simulations, testing, and applications," Appl. Opt. 43, 5503-5511 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-29-5503


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. I. Kusaka, Z. G. Wang, J. H. Seinfeld, “Binary nucleation of sulfuric acid-water: Monte Carlo simulation,” J. Chem. Phys. 108, 6829–6848 (1998). [CrossRef]
  2. A. Laaksonen, R. McGraw, H. Vehkamäki, “Liquid-drop formalism and free-energy surfaces in binary homogeneous nucleation theory,” J. Chem. Phys. 111, 2019–2027 (1999). [CrossRef]
  3. M. Matsumoto, S. Saito, I. Ohmine, “Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing,” Nature 416, 409–413 (2002). [CrossRef] [PubMed]
  4. R. McGraw, D. T. Wu, “Kinetic extensions of the nucleation theorem,” J. Chem. Phys. 118, 9337–9347 (2003). [CrossRef]
  5. P. R. ten Wolde, D. W. Oxtoby, D. Frenkel, “Chain formation in homogeneous gas-liquid nucleation of polar fluids,” J. Chem. Phys. 111, 4762–4773 (1999). [CrossRef]
  6. D. Kashchiev, “On the relation between nucleation work, nucleus size, and nucleation rate,” J. Chem. Phys. 76, 5098–5102 (1982). [CrossRef]
  7. K. S. Carslaw, S. L. Clegg, P. Brimblecombe, “A thermodynamic model of the system Hcl-Hno3–H2So4–H2O, including solubilities of Hbr, from less-than-200 to 328 K,” J. Phys. Chem. 99, 11557–11574 (1995). [CrossRef]
  8. K. S. Carslaw, T. Peter, S. L. Clegg, “Modeling the composition of liquid stratospheric aerosols,” Rev. Geophys. 35, 125–154 (1997). [CrossRef]
  9. T. Koop, B. P. Luo, A. Tsias, T. Peter, “Water activity as the determinant for homogeneous ice nucleation in aqueous solutions,” Nature 406, 611–614 (2000). [CrossRef] [PubMed]
  10. T. Peter, “Microphysics and heterogeneous chemistry of polar stratospheric clouds,” Annu. Rev. Phys. Chem. 48, 785–822 (1997). [CrossRef] [PubMed]
  11. C. Timmreck, “Three-dimensional simulation of stratospheric background aerosol: first results of a multiannual general circulation model simulation,” J. Geophys. Res. 106(D22), 28313–28332 (2001). [CrossRef]
  12. A. K. Bertram, T. Koop, L. T. Molina, M. J. Molina, “Ice formation in (NH4)2SO4-H2O particles,” J. Phys. Chem. A 104, 584–588 (2000). [CrossRef]
  13. A. K. Bertram, D. B. Dickens, J. J. Sloan, “Supercooling of type 1 polar stratospheric clouds: the freezing of submicron nitric acid aerosols having HNO3 mol fractions less than 0.5,” J. Geophys. Res. 105(D7), 9283–9290 (2000). [CrossRef]
  14. H.-M. Hung, S. T. Martin, “Infrared spectroscopic evidence for the ice formation mechanisms active in aerosol flow tubes,” Appl. Spectrosc. 56, 1067–1081 (2002). [CrossRef]
  15. M. R. Gunson, M. M. Abbas, M. C. Abrams, M. Allen, L. R. Brown, T. L. Brown, A. Y. Chang, A. Goldman, F. W. Irion, L. L. Lowes, E. Mahieu, G. L. Manney, H. A. Michelsen, M. J. Newchurch, C. P. Rinsland, R. J. Salawitch, G. P. Stiller, G. C. Toon, Y. L. Yung, R. Zander, “The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment: deployment on the ATLAS Space Shuttle missions,” Geophys. Res. Lett. 23, 2333–2336 (1996). [CrossRef]
  16. Y. J. Kaufman, D. Tanré, O. Boucher, “A satellite view of aerosols in the climate system,” Nature 419, 215–223 (2002). [CrossRef] [PubMed]
  17. Y. Sasano, M. Suzuki, T. Yokota, H. Kanzawa, “Improved limb atmospheric spectrometer (ILAS) for stratospheric ozone layer measurements by solar occultation technique,” Geophys. Res. Lett. 26, 197–200 (1999). [CrossRef]
  18. A. Aballe, M. Bethencourt, F. J. Botana, M. Marcos, J. M. Sánchez-Amaya, “Use of wavelets to study electrochemical noise transients,” Electrochim. Acta 46, 2353–2361 (2001). [CrossRef]
  19. A. Y. Zasetsky, J. J. Sloan, R. Escribano, D. Fernandez, “A new method for the quantitative identification of the composition, size and density of stratospheric aerosols from high resolution IR satellite measurements,” Geophys. Res. Lett. 29, 2071, doi:10-1029/2002GL015816 (2002). [CrossRef]
  20. O. V. Dubovik, T. V. Lapyonok, S. L. Oshchepkov, “Improved technique for data inversion: optical sizing of multicomponent aerosols,” Appl. Opt. 34, 8422–8436 (1995). [CrossRef] [PubMed]
  21. C. L. Lawson, R. J. Hanson, Solving Least Squares Problems, (Prentice-Hall, Englewood Cliffs, N.J., 1974).
  22. F. W. Irion, M. R. Gunson, G. C. Toon, A. Y. Chang, A. Eldering, E. Mahieu, G. L. Manney, H. A. Michelsen, E. J. Moyer, M. J. Newchurch, G. B. Osterman, C. P. Rinsland, R. J. Salawitch, B. Sen, Y. L. Yung, R. Zander, “Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment Version 3 data retrievals,” Appl. Opt. 41, 6968–6979 (2002). [CrossRef] [PubMed]
  23. D. L. Phillips, “A technique for the numerical solution of certain integral equations of the first kind,” J. Assoc. Comput. Mach. 9, 84–97 (1962). [CrossRef]
  24. C. S. Burrus, R. A. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms (Prentice-Hall, Upper Saddle River, N.J., 1998).
  25. H. P. William, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in FORTRAN: the Art of Scientific Computing (Cambridge U. Press, New York, 1992).
  26. M. I. Mishchenko, L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994). [CrossRef]
  27. M. I. Mishchenko, L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998). [CrossRef]
  28. U. M. Biermann, B. P. Luo, T. Peter, “Absorption spectra and optical constants of binary and ternary solutions of H2SO4, HNO3, and H2O in the mid infrared at atmospheric temperatures,” J. Phys. Chem. A 104, 783–793 (2000). [CrossRef]
  29. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  30. M. L. Clapp, D. R. Worsnop, R. E. Miller, “Frequency-dependent optical constants of water ice obtained directly from aerosol extinction spectra,” J. Phys. Chem. 99, 6317–6326 (1995). [CrossRef]
  31. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  32. B. T. Draine, P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT.6.0,” Astrophys. astro-ph/0309069, http://arxiv.org/abs/astro-ph/0309069 (2003).
  33. C. P. Rinsland, G. K. Yue, M. R. Gunson, R. Zander, M. C. Abrams, “Mid-infrared extinction by sulfate aerosols from the Mt Pinatubo eruption,” J. Quant. Spectrosc. Radiat. Transfer 52, 241–252 (1994). [CrossRef]
  34. T. Deshler, B. J. Johnson, W. R. Rozier, “Balloonborne measurements of Pinatubo aerosol during 1991 and 1992 at 41 °N: vertical profiles, size distribution, and volatility,” Geophys. Res. Lett. 20, 1435–1438 (1993). [CrossRef]
  35. T. Deshler, M. E. Hervig, D. J. Hofmann, J. M. Rosen, J. B. Liley, “Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41 °N), using balloon-borne instruments,” J. Geophys. Res. 108(D5), 4167, doi:10.1029/2002JD002514 (2003).
  36. K.-M. Lee, J. H. Park, S. T. Massie, W. Choi, “Extinction coefficients and properties of Pinatubo aerosol determined from Halogen Occultation Experiment (HALOE) data,” J. Geophys. Res. 106(D22), 28333–28345 (2001). [CrossRef]
  37. S. T. Massie, T. Deshler, G. E. Thomas, J. L. Mergenthaler, J. M. Russell, “Evolution of the infrared properties of the Mount Pinatubo aerosol cloud over Laramie, Wyoming,” J. Geophys. Res. 101(D17), 23007–23019 (1996). [CrossRef]
  38. G. K. Yue, L. W. Thomason, L. R. Poole, P.-H. Wang, D. Baumgardner, J. E. Dye, “Aerosol surface areas deduced from early 1993 SAGE II data and comparisons with stratospheric photochemistry, aerosols, and dynamics expedition measurements,” Geophys. Res. Lett. 22, 2933–2936 (1995). [CrossRef]
  39. C. P. Rinsland, M. R. Gunson, P. H. Wang, R. F. Arduini, B. A. Baum, P. Minnis, A. Goldman, M. C. Abrams, R. Zander, E. Mahieu, R. J. Salawitch, H. A. Michelsen, F. W. Irion, M. J. Newchurch, “ATMOS/ATLAS 3 infrared profile measurements of clouds in the tropical and subtropical upper troposphere,” J. Quant. Spectrosc. Radiat. Transfer 60, 903–919 (1998). [CrossRef]
  40. B. H. Kahn, A. Eldering, F. W. Irion, F. P. Mills, B. Sen, M. R. Gunson, “Cloud identification in Atmospheric Trace Molecule Spectroscopy infrared occultation measurements,” Appl. Opt. 41, 2768–2780 (2002). [CrossRef] [PubMed]
  41. O. Jourdan, S. Oshchepkov, J.-F. Gayet, V. Shcherbakov, H. Isaka, “Statistical analysis of cloud light scattering and microphysical properties obtained from airborne measurements,” J. Geophys. Res. 108(D5), 4155, doi:10.1029/2002JD002723 (2003).
  42. J. Ström, B. Strauss, T. Anderson, F. Schröder, J. Heintzenberg, P. Wendling, “In situ observations of the microphysical properties of young cirrus clouds,” J. Atmos. Sci. 54, 2542–2553 (1997). [CrossRef]
  43. P. R. Field, A. J. Baran, P. H. Kaye, E. Hirst, R. Greenaway, “A test of cirrus ice crystal scattering phase functions,” Geophys. Res. Lett. 30, 1752, doi:10.1029/2003GLO17482 (2003). [CrossRef]
  44. B. Karcher, J. Strom, “The roles of dynamical variability and aerosols in cirrus cloud formation,” Atmos. Chem. Phys. 3, 823–838 (2003). [CrossRef]
  45. J. P. D. Abbatt, K. D. Beyer, A. F. Fucaloro, J. R. McMahon, P. J. Wooldridge, R. Zhang, M. J. Molina, “Interaction of HCl vapor with water-ice: implications for the stratosphere,” J. Geophys. Res. 97(D14), 15819–15826 (1992).
  46. R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer-Verlag, New York, 1985).
  47. C. Garrod, Statistical Mechanics and Thermodynamics (Oxford U. Press, New York, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited