OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 29 — Oct. 10, 2004
  • pp: 5512–5522

Numerical simulation of light backscattering by spheres with off-center inclusion. Application to the lidar case

Vadim Griaznov, Igor Veselovskii, Paolo Di Girolamo, Belay Demoz, and David N. Whiteman  »View Author Affiliations

Applied Optics, Vol. 43, Issue 29, pp. 5512-5522 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (224 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Mie backscattering model for spherical particles with off-center inclusion has been developed and tested. The program is capable of dealing with size parameter values up to ∼1000, thus allowing one to simulate the optical behavior of a large variety of atmospheric aerosols, as well as cloud and precipitation particles. On the basis of this model, we simulated the optical properties of polydisperse composite atmospheric particles as observed by ground-based and airborne lidar systems. We have characterized optical properties in terms of host and inclusion radii, considering water particles with different composition inclusions. The performed modeling provides some insight into the so-called lidar bright- and dark-band phenomenon.

© 2004 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.4020) Scattering : Mie theory

Original Manuscript: January 12, 2004
Revised Manuscript: June 18, 2004
Published: October 10, 2004

Vadim Griaznov, Igor Veselovskii, Paolo Di Girolamo, Belay Demoz, and David N. Whiteman, "Numerical simulation of light backscattering by spheres with off-center inclusion. Application to the lidar case," Appl. Opt. 43, 5512-5522 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), Chaps. 3 and 4.
  2. K. Sassen, “Contrail-cirrus and their potential for regional climate change,” Bull. Am. Meteorol. Soc. 78, 1885–1903 (1997). [CrossRef]
  3. P. Di Girolamo, B. B. Demoz, D. N. Whiteman, “Model simulations of melting hydrometeors: a new lidar bright band from melting frozen drops,” Geophys. Res. Lett. 30, 1626, doi: 10.1029/2002GL016825 (2003). [CrossRef]
  4. K. Sassen, T. Chen, “The lidar dark band: an oddity of the radar bright band,” Geophys. Res. Lett. 22, 3505–3508 (1995). [CrossRef]
  5. Q. L. Aden, M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951). [CrossRef]
  6. T. Yokoyama, H. Tanaka, “Microphysical processes of melting snow-flakes detected by two-wavelength radar. Part I. Principle of measurement based on model calculation,” J. Meteorol. Soc. Jpn. 62, 650–666 (1984).
  7. K. Aydin, Y. Zhao, “A computational study of polarimetric radar observables in hail,” IEEE Trans. Geosci. Remote Sens. 28, 412–422 (1990). [CrossRef]
  8. S. K. Mitra, O. Vohl, M. Ahr, H. R. Pruppacher, “A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes,” J. Atmos. Sci. 47, 584–591 (1990). [CrossRef]
  9. R. Meneghini, L. Liao, “Effective dielectric constants of mixed-phase hydrometeors,” J. Atmos. Ocean. Technol. 17, 628–640 (2000). [CrossRef]
  10. J. G. Fikioris, N. K. Uzunoglu, “Scattering from an eccentrically stratified dielectric sphere,” J. Opt. Soc. Am. 69, 1359–1366 (1979). [CrossRef]
  11. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991). [CrossRef]
  12. F. Borghese, P. Denti, R. Saija, O. I. Sindoni, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327–1335 (1992). [CrossRef]
  13. N. C. Skaropoulos, M. P. Ioannidou, D. P. Chrissoulidis, “Indirect mode-matching solution to scattering from a dielectric sphere with an eccentric inclusion,” J. Opt. Soc. Am. A 11, 1859–1866 (1994). [CrossRef]
  14. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893–904 (1995). [CrossRef]
  15. D. Ngo, G. Videen, P. Chýlek, “A fortran code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion,” Comput. Phys. Commun. 1077, 94–112 (1996). [CrossRef]
  16. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
  17. W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968). [CrossRef]
  18. L. J. Battan, Radar Observations of the Atmosphere (Univ. Chicago Press, Chicago, Ill., 1973).
  19. D. N. Whiteman, K. D. Evans, B. Demoz, D. O’C. Starr, E. W. Eloranta, D. Tobin, W. Feltz, G. J. Jedlovec, S. I. Gutman, G. K. Schwemmer, M. Cadirola, S. H. Melfi, F. J. Schmidlin, “Raman lidar measurements of water vapor and cirrus clouds during the passage of hurricane Bonnie,” J. Geophys. Res. 106, 5211–5225 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited