OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 29 — Oct. 10, 2004
  • pp: 5531–5541

Imaginary refractive-index effects on desert-aerosol extinction versus backscatter relationships at 351 nm: numerical computations and comparison with Raman lidar measurements

Maria Rita Perrone, Francesca Barnaba, Ferdinando De Tomasi, Gian Paolo Gobbi, and Anna Maria Tafuro  »View Author Affiliations


Applied Optics, Vol. 43, Issue 29, pp. 5531-5541 (2004)
http://dx.doi.org/10.1364/AO.43.005531


View Full Text Article

Enhanced HTML    Acrobat PDF (419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical model is used to investigate the dependence at 351 nm of desert-aerosol extinction and backscatter coefficients on particle imaginary refractive index (m i ). Three ranges (-0.005 ≤ m i ≤ -0.001, -0.01 ≤ m i ≤ -0.001, and -0.02 ≤ m i ≤ -0.001) are considered, showing that backscatter coefficients are reduced as |m i | increases, whereas extinction coefficients are weakly dependent on m i . Numerical results are compared with extinction and backscatter coefficients retrieved by elastic Raman lidar measurements performed during Saharan dust storms over the Mediterranean Sea. The comparison indicates that a range of -0.01 to -0.001 can be representative of Saharan dust aerosols and that the nonsphericity of mineral particles must be considered.

© 2004 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.3640) Atmospheric and oceanic optics : Lidar

History
Original Manuscript: February 27, 2004
Revised Manuscript: June 23, 2004
Published: October 10, 2004

Citation
Maria Rita Perrone, Francesca Barnaba, Ferdinando De Tomasi, Gian Paolo Gobbi, and Anna Maria Tafuro, "Imaginary refractive-index effects on desert-aerosol extinction versus backscatter relationships at 351 nm: numerical computations and comparison with Raman lidar measurements," Appl. Opt. 43, 5531-5541 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-29-5531


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. d’Almeida, “On the variability of desert-dust radiative characteristics,” J. Geophys. Res. 92, 3017–3026 (1987). [CrossRef]
  2. J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product,” Rev. Geophys. 40, 2-1–2-31 (2002). [CrossRef]
  3. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–654 (1984). [CrossRef] [PubMed]
  4. J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15, 1044–1050 (1998). [CrossRef]
  5. F. Barnaba, G. P. Gobbi, “Lidar estimation of tropospheric aerosol extinction, surface area, and volume: maritime and desert-dust cases,” J. Geophys. Res. 106, 3005–3018 (2001); erratum, J. Geophys. Res. doi: 10.1029/2002 JD002340 (2002). [CrossRef]
  6. M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997). [CrossRef]
  7. F. Barnaba, F. De Tomasi, G. P. Gobbi, M. R. Perrone, A. Tafuro, “Extinction versus backscatter relationships for lidar applications at 351 nm: maritime and desert aerosol simulations and comparison with observation,” Atmos. Res. 70, 229–259 (2004). [CrossRef]
  8. E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan aerosol,” J. Geophys. Res. 82, 3153–3160 (1977). [CrossRef]
  9. Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) dust—comparison of optical and direct sampling data,” J. Atmos. Sci. 37, 882–891 (1980). [CrossRef]
  10. J. B. Gillespie, J. D. Lindberg, “Seasonal and geographic variations in imaginary refractive index of atmospheric particulate matter,” Appl. Opt. 31, 2107–2115 (1992). [CrossRef] [PubMed]
  11. Y. Sasano, E. V. Browell., “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989). [CrossRef] [PubMed]
  12. P. R. Colarco, O. B. Toon, O. Torres, P. J. Rasch, “Determining the UV imaginary index of refraction of Saharan dust particles from TOMS data using a three dimensional model of dust transport,” J. Geophys. Res. 107, doi: 10.129/2001JD000903 (2002). [CrossRef]
  13. I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelength,” J. Geophys. Res. 104, 9423–9444 (1999). [CrossRef]
  14. J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.
  15. E. Molinaroli, “Mineralogical characterization of Saharan dust with a view to its final destination in Mediterranean sediments,” in The Impact of Desert Dust across the Mediterranean, S. Guerzoni, R. Chester, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 153–162. [CrossRef]
  16. A. Avila, I. Queralt-Mitjans, M. Alarcòn, “Mineralogical composition of African dust delivered by red rains over the northeastern Spain,” J. Geophys. Res. 102, 21977–21996 (1997). [CrossRef]
  17. S. Guerzoni, E. Molinaroli, R. Chester, “Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications,” Deep-Sea Res. II 44, 631–654 (1997). [CrossRef]
  18. A. Blanco, F. De Tomasi, E. Filippo, D. Manno, A. Serra, A. M. Tafuro, A. Tepore, “Characterization of African dust over southern Italy,” Atmos. Chem. Phys. 3, 1–13 (2003). [CrossRef]
  19. E. Ganor, “The composition of clay minerals transported to Israel as indicators of Saharan dust emission,” Atmos. Environ. 25A, 2657–2664 (1991).
  20. E. Ganor, H. A. Foner, “The mineralogical and chemical properties and the behavior of Aeolian Saharan Dust over Israel,” in The Impact of Desert Dust across the Mediterranean, S. Guerzoni, R. Chester, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), p. 24.
  21. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  22. A. Ansmann, F. Wagner, D. Althausen, D. Muller, A. Herber, U. Wandinger, “European Pollution Outbreaks during ACE 2. I. Alofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20723–20733 (2001). [CrossRef]
  23. I. Mattis, A. Ansmann, D. Muller, U. Wandinger, D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29, 201–204 (2002). [CrossRef]
  24. F. De Tomasi, M. R. Perrone, “Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy,” J. Geophys. Res. 108, 14-1–14-12 (2003). [CrossRef]
  25. F. De Tomasi, A. Blanco, M. R. Perrone, “Raman lidar monitoring of extinction and backscattering of Africa dust layers and dust characterization,” Appl. Opt. 42, 1699–1709 (2003). [CrossRef] [PubMed]
  26. J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).
  27. C. Kottmeier, B. Fay, “Trajectorics in the antartic lower troposphere,” J. Geophys. Res. 105, 10947–10959 (1998). [CrossRef]
  28. A. Stohl, “Computation, accuracy and application of trajectories — a review and bibliography,” Atmos. Environ. 32, 947–966 (1998). [CrossRef]
  29. M. R. Perrone, F. De Tomasi, A. Tafuro, “Lidar ratios of Sahara dust aerosols,” submitted to Geophys. Res. Lett.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited