OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 29 — Oct. 10, 2004
  • pp: 5542–5546

Influence of numerical aperture on mode coupling in step-index plastic optical fibers

Svetislav Savović and Alexandar Djordjevich  »View Author Affiliations

Applied Optics, Vol. 43, Issue 29, pp. 5542-5546 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (111 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using the power-flow equation, we have examined the state of mode coupling in step-index plastic optical fibers with different numerical apertures. Our results confirm that the coupling rates vary with the coupling coefficient of the fibers as the dominant parameter, especially in the early stage of coupling near the input fiber end. However, we show that the fiber’s numerical aperture has a significant influence on later stages of this process. Consequently, equilibrium mode distribution and steady-state distribution are achieved at overall fiber lengths that depend on both of these factors. As one of our examples demonstrates, it is possible for the coupling length of a high-aperture fiber to be similar to that of a low-aperture fiber despite the three-times-larger coupling coefficient of the former.

© 2004 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

Original Manuscript: November 20, 2003
Revised Manuscript: June 19, 2004
Published: October 10, 2004

Svetislav Savović and Alexandar Djordjevich, "Influence of numerical aperture on mode coupling in step-index plastic optical fibers," Appl. Opt. 43, 5542-5546 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Yadlowsky, A. R. Mickelson, “Distributed loss and mode coupling and their effect on time-dependent propagation in multimode fibers,” Appl. Opt. 32, 6664–6677 (1993). [CrossRef] [PubMed]
  2. A. F. Garito, J. Wang, R. Gao, “Effects of random perturbations in plastic optical fibers,” Science 281, 962–967 (1998). [CrossRef] [PubMed]
  3. M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou, J. Zubía, “Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers,” J. Lightwave Technol. 20, 1160–1164 (2002). [CrossRef]
  4. A. Djordjevich, M. Fung, R. Y. K. Fung, “Principles of deflection-curvature measurement,” Meas. Sci. Technol. 12, 1983–1989 (2001). [CrossRef]
  5. M. Eve, J. H. Hannay, “Ray theory and random mode coupling in an optical fibre waveguide. I.” Opt. Quantum Electron. 8, 503–508 (1976). [CrossRef]
  6. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1783 (1972). [CrossRef]
  7. W. A. Gambling, D. N. Payne, H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14, 1538–1542 (1975). [CrossRef] [PubMed]
  8. M. Rousseau, L. Jeunhomme, “Numerical solution of the coupled-power equation in step index optical fibers,” IEEE Trans. Microwave Theory Tech. 25, 577–585 (1977). [CrossRef]
  9. A. Djordjevich, S. Savović, “Investigation of mode coupling in step index plastic optical fibers using the power flow equation,” IEEE Photon. Technol. Lett. 12, 1489–1491 (2000). [CrossRef]
  10. S. Savović, A. Djordjevich, “Optical power flow in plastic clad silica fibers,” Appl. Opt. 41, 7588–7591 (2002). [CrossRef]
  11. J. Zubia, G. Durana, G. Aldabaldetreku, J. Arrue, M. A. Losada, M. Lopez-Higuera, “New method to calculate mode conversion coefficients in SI multimode optical fibers,” J. Lightwave Technol. 21, 776–781 (2003). [CrossRef]
  12. S. Savović, A. Djordjevich, “Solution of mode coupling in step-index optical fibers by the Fokker-Planck equation and the Langevin equation,” Appl. Opt. 41, 2826–2830 (2002). [CrossRef] [PubMed]
  13. L. Jeunhomme, M. Fraise, J. P. Pocholle, “Propagation model for long step-index optical fibers,” Appl. Opt. 15, 3040–3046 (1976). [CrossRef] [PubMed]
  14. J. D. Anderson, Computational Fluid Dynamics (McGraw-Hill, New York, 1995).
  15. G. Jiang, R. F. Shi, A. F. Garito, “Mode coupling and equilibrium mode distribution conditions in plastic optical fibers,” IEEE Photon. Technol. Lett. 9, 1128–1130 (1997). [CrossRef]
  16. V. Ruddy, G. Shaw, “Mode coupling in large-diameter polymer-clad silica fibers,” Appl. Opt. 34, 1003–1006 (1995). [CrossRef] [PubMed]
  17. E. L. Chinnock, L. G. Cohen, W. S. Holden, R. D. Standley, D. B. Keck, “The length dependence of pulse spreading in the CGW-Bell-10 optical fiber,” Proc. IEEE 61, 1499–1500 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited