OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 29 — Oct. 10, 2004
  • pp: 5547–5551

Simple method for frequency locking of an extended-cavity diode laser

Wenge Yang, Amitabh Joshi, Hai Wang, and Min Xiao  »View Author Affiliations


Applied Optics, Vol. 43, Issue 29, pp. 5547-5551 (2004)
http://dx.doi.org/10.1364/AO.43.005547


View Full Text Article

Enhanced HTML    Acrobat PDF (91 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed an extended-cavity tunable diode laser system that has a small linewidth and a large output power (more than 90% of the free-running power) whose operating frequency can be conveniently locked to a transition line of Rb atoms. Based on flat-mirror feedback and frequency self-locking and with weak feedback, we have achieved a continuous frequency detuning range greater than 900 MHz and a short-time linewidth stability of better than 0.4%. By using a two-step locking procedure we not only can lock the laser frequency but also can detune the frequency to any desired value. The locking is quite sturdy and rugged.

© 2004 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers

Citation
Wenge Yang, Amitabh Joshi, Hai Wang, and Min Xiao, "Simple Method for Frequency Locking of an Extended-Cavity Diode Laser," Appl. Opt. 43, 5547-5551 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-29-5547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. E. Wieman and L. Hallberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). This is a review paper about diode lasers and atomic physics. [CrossRef]
  2. B. Dahmani, L. Hollberg, and R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12, 876–878 (1987). [CrossRef] [PubMed]
  3. J. Mark, E. Bodtker, and B. Tromborg, “Measurement of Rayleigh backscatter-induced linewidth reduction,” Electron. Lett. 21, 1008–1009 (1985). [CrossRef]
  4. W. D. Lee, C. Campbell, R. J. Brecha, and H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990). [CrossRef]
  5. G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, and M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998). [CrossRef]
  6. S. Kobayashi and T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981). [CrossRef]
  7. I. Shvarchuck, K. Dieckmann, M. Zielonkowski, and J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose-Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000). [CrossRef]
  8. S. Saito, O. Nilsson, and Y. Yamamoto, “Frequency modulation noise and linewidth reduction in a semiconductor laser by means of negative frequency feedback technique,” Appl. Phys. Lett. 46, 3–5 (1985). [CrossRef]
  9. M. Ohtsu and N. Tabuchi, “Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser,” J. Lightwave Technol. 6, 357–369 (1988). [CrossRef]
  10. F. Favre and L. Le Guen, “Spectral properties of a semiconductor laser coupled to a single mode fiber resonator,” IEEE J. Quantum Electron. 21, 1937–1946 (1985). [CrossRef]
  11. D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24, 1499–1501 (1999). [CrossRef]
  12. S. Baluschev, N. Friedman, L. Khaykovich, D. Carasso, B. Johns, and N. Davidson, “Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock,” Appl. Opt. 39, 4970–4974 (2000). [CrossRef]
  13. M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholakia, “Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).
  14. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998). [CrossRef]
  15. S. Jin, Y. Li, and M. Xiao, “Single-mode diode laser with a large frequency-scanning range based on weak grating feedback,” Appl. Opt. 35, 1436–1441 (1996). [CrossRef] [PubMed]
  16. Throughout this paper we provide details of the commercial components that we have used so that the readers can easily duplicate our system if they wish. Components from other manufacturers may deliver similar or better performance.
  17. D. R. Hjelme, A. R. Mickelson, and R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991). [CrossRef]
  18. B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2003).
  19. D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, Englewood Cliffs, N.J., 1998).
  20. H. Wang, D. J. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001). [CrossRef] [PubMed]
  21. H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2002). [CrossRef]
  22. A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003). [CrossRef]
  23. A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003). [CrossRef] [PubMed]
  24. Available from S. Lee, http://laser.physics.sunysb.edu/s̃ellee/presentation2.pdf, 2001.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited