OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 29 — Oct. 10, 2004
  • pp: 5552–5563

Algorithm for the retrieval of columnar water vapor from hyperspectral remotely sensed data

Alessandro Barducci, Donatella Guzzi, Paolo Marcoionni, and Ivan Pippi  »View Author Affiliations


Applied Optics, Vol. 43, Issue 29, pp. 5552-5563 (2004)
http://dx.doi.org/10.1364/AO.43.005552


View Full Text Article

Enhanced HTML    Acrobat PDF (821 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new algorithm for the retrieval of columnar water vapor content is presented. The proposed procedure computes the area of the H2O absorption centered about 940 nm to allow its integrated columnar abundance as well as its density at ground level to be assessed. The procedure utilizes the HITRAN 2000 database as the source of H2O cross-section spectra. Experimental results were derived from radiometrically calibrated hyperspectral images collected by the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) sensor over the Cuprite mining district in Nevada. Numerical simulations based on the MODTRAN 4 radiative transfer code were also employed for investigating the algorithm’s performance. An additional empirical H2O retrieval procedure was tested by use of data gathered by the VIRS-200 imaging spectrometer.

© 2004 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.1030) Spectroscopy : Absorption
(300.3700) Spectroscopy : Linewidth

History
Original Manuscript: December 11, 2003
Revised Manuscript: June 12, 2004
Published: October 10, 2004

Citation
Alessandro Barducci, Donatella Guzzi, Paolo Marcoionni, and Ivan Pippi, "Algorithm for the retrieval of columnar water vapor from hyperspectral remotely sensed data," Appl. Opt. 43, 5552-5563 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-29-5552


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992). [CrossRef]
  2. W. P. Elliotad, J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991). [CrossRef]
  3. J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984). [CrossRef]
  4. V. Carrere, J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—sensitivity analysis and application to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” Remote Sens. Environ 44, 179–204 (1993). [CrossRef]
  5. R. Bennartz, J. Fischer, “Retrieval of columnar water vapor over land from backscattered solar radiation using the Medium Resolution Imaging Spectrometer,” Remote Sens. Environ. 78, 274–283 (2001). [CrossRef]
  6. E. B. Knipling, “Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation,” Remote Sens. Environ. 1, 155–159 (1970). [CrossRef]
  7. B. C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990). [CrossRef]
  8. Y. J. Kaufman, B. C. Gao, “Remote sensing of water vapor in the nearer IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992). [CrossRef]
  9. G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.
  10. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  11. W. Malkmus, “Random Lorentz band model with exponential-tailed S-1 line intensity distribution function,” J. Opt. Soc. Am. 57, 323–329 (1967). [CrossRef]
  12. S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of International Radiation Symposium, Lille, France, 18–24 August 1988, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.
  13. M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003). [CrossRef]
  14. S. A. Ackerman, “Remote sensing aerosols using satellite infrared observations,” J. Geophys. Res. 102, 17069–17079 (1997). [CrossRef]
  15. M. E. Thomas, R. J. Nordstrom, “Line shape model for describing infrared absorption by water vapor,” Appl. Opt. 24, 3526–3530 (1985). [CrossRef] [PubMed]
  16. C. Prabhakara, G. Dalu, V. G. Kunde, “Estimation of sea surface temperature from remote sensing in the 11-to-13-μm window region,” J. Geophys. Res. 79, 5039–5045 (1974). [CrossRef]
  17. C. G. Kilsby, D. P. Edwards, R. W. Saunders, J. S. Foot, “Water-vapor continuum absorption in the tropics: aircraft measurements and model comparisons,” Q. J. R. Meteorol. Soc. 118, 715–748 (1992). [CrossRef]
  18. M. I. Mishchenko, L. D. Travis, R. A. Khan, R. A. West, “Modeling phase function for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997). [CrossRef]
  19. W. B. Grant, “Water vapor absorption coefficient in the 8–13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990). [CrossRef] [PubMed]
  20. Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990). [CrossRef]
  21. Q. Ma, R. H. Tipping, “The atmospheric water vapor continuum in the infrared: extension of the statistical theory of Rosenkranz,” J. Chem. Phys. 93, 7066–7075 (1990). [CrossRef]
  22. Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water continuum absorption in the infrared region. I,” J. Chem. Phys. 95, 6290–6301 (1991). [CrossRef]
  23. Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water vibrational bands. II,” J. Chem. Phys. 96, 8655–8663 (1992). [CrossRef]
  24. Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III,” J. Chem. Phys. 97, 818–828 (1992). [CrossRef]
  25. K. K. Lehmann, A. M. Smith, “Where does overtone intensity come from?” J. Chem. Phys. 93, 6140–6147 (1990). [CrossRef]
  26. I. J. Barton, “Infrared continuum water vapor absorption coefficients derived from satellite data,” Appl. Opt. 30, 2929–2934 (1991). [CrossRef] [PubMed]
  27. M. E. Thomas, “Infrared- and millimeter wavelength continuum absorption in the atmospheric windows: measurements and models,” Infrared Phys. 30, 161–174 (1990). [CrossRef]
  28. R. E. Roberts, J. E. A. Selby, L. M. Biberman, “Infrared continuum absorption by atmospheric water vapor in the 8–12-μm window,” Appl. Opt. 15, 2085–2090 (1978). [CrossRef]
  29. P. Chylek, D. J. W. Geldart, “Water vapor dimers and atmospheric absorption of electromagnetic radiation,” Geophys. Res. Lett. 24, 2015–2018 (1997). [CrossRef]
  30. D. R. Cutten, “Extension of water vapor continuum absorption to the 4.5–5.0 μm region,” Infrared Phys. 19, 663–667 (1979). [CrossRef]
  31. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17081–17106 (1997). [CrossRef]
  32. J. S. Accetta, D. L. Shumsker, eds., The Infrared and Electro-Optical System Handbook (SPIE, Bellingham, Wash., (1993), Vols. 1–8.
  33. F. M. Henderson, A. J. Lewis, eds., Manual of Remote Sensing (American Society of Photogrammetry and Remote Sensing, Bethesda, Md., 1983), Vols. I and II.
  34. K. Mathew, C. M. Nagarini, A. S. Kirankumar, “Split-window and multi-angle methods of sea surface temperature determination: an analysis,” Int. J. Remote Sensing 22, 3237–3251 (2001). [CrossRef]
  35. S. J. English, C. Guillou, C. Prigent, D. C. Jones, “Aircraft measurements of water vapor continuum absorption at millimetre wavelengths,” Q. J. R. Meteorol. Soc. 120, 603–625 (1994). [CrossRef]
  36. B.-C. Gao, Y. J. Kaufman, “Derivation of columnar atmospheric water vapor amount from MODIS near-IR channels,” presented at the International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, 24–28 July 2000.
  37. A. Barducci, I. Pippi, “The airborne VIRS for monitoring of the environment,” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE3221, 437–446 (1998). [CrossRef]
  38. Officine Galileo, Radiometro Multispettrale VIRS 200, VIRS handbook (Officine Galileo, Florence, Italy, 1994).
  39. A. Barducci, I. Pippi, “Analysis and rejection of systematic disturbances in hyperspectral remotely sensed images of the Earth,” Appl. Opt. 40, 1464–1477 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited