OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 29 — Oct. 10, 2004
  • pp: 5564–5574

Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering

Jan Egermann, Thomas Seeger, and Alfred Leipertz  »View Author Affiliations


Applied Optics, Vol. 43, Issue 29, pp. 5564-5574 (2004)
http://dx.doi.org/10.1364/AO.43.005564


View Full Text Article

Enhanced HTML    Acrobat PDF (901 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the use of linear Raman scattering for the investigation of fuel-rich sooting flames. In comparison, the frequency-tripled and -quadrupled fundamental wavelengths of a Nd:YAG laser have been used as an excitation source for study of the applicability of these laser wavelengths for analysis of sooting flames. The results obtained show that, for the investigation of strongly sooting flames, 266-nm excitation is better than 355-nm excitation. Although the entire fluorescence intensity of polycyclic aromatic hydrocarbons (PAHs) decreases with rising excitation wavelength, there is increased interference with the Raman signals by displacement of the spectral region of the Raman signals toward the fluorescence maximum of the laser-induced fluorescence emissions. Besides the broadband signals of PAHs, narrowband emissions of laser-produced C2 occur in the spectra of sooting flames and affect the Raman signals. These C2 emission bands are completely depolarized and can be separated by polarization-resolved detection. A comparison of the laser-induced fluorescence emissions of an ethylene flame with those of a methane flame shows the same spectral features, but the intensity of the emissions is larger by a factor of 5 for the ethylene fuel. Using 266-nm radiation for Raman signal excitation makes possible measurements in the ethylene flame also.

© 2004 Optical Society of America

OCIS Codes
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6450) Spectroscopy : Spectroscopy, Raman

History
Original Manuscript: December 10, 2003
Revised Manuscript: July 15, 2004
Published: October 10, 2004

Citation
Jan Egermann, Thomas Seeger, and Alfred Leipertz, "Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering," Appl. Opt. 43, 5564-5574 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-29-5564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Ledermann, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977). [CrossRef]
  2. A. C. Eckbreth, P. A. Bonczyk, J. F. Vierdeck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979). [CrossRef]
  3. A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987). [CrossRef]
  4. R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987). [CrossRef]
  5. J. H. Kent, H. G. Wagner, “Warum russen Diffusionsflammen?” Erdöl Kohle 38, 543–549 (1985).
  6. F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985). [CrossRef]
  7. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994). [CrossRef]
  8. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995). [CrossRef] [PubMed]
  9. R. J. Osborne, J. A. Wehrmeyer, R. W. Pitz, “A comparison of UV Raman and visible Raman techniques for measuring non-sooting partially premixed hydrocarbon flames,” paper AIAA 2000-0776 presented at the 38th Sciences Meeting and Exhibit, Reno, Nev., 10–13 January 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 1–11.
  10. E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by the use of a narrow-band XeCl excimer laser,” Appl. Opt. 32, 4058–4065 (1993). [PubMed]
  11. E. W. Rothe, P. Andresen, “Application of tunable excimer lasers to combustion diagnostics: a review,” Appl. Opt. 36, 3971–4033 (1997). [CrossRef] [PubMed]
  12. J. A. Wehrmeyer, T. S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992). [CrossRef] [PubMed]
  13. J. A. Shirley, “UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990). [CrossRef]
  14. R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T. S. Cheng, “Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame,” Appl. Opt. 29, 2325–2332 (1990). [CrossRef] [PubMed]
  15. A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998). [CrossRef]
  16. R. S. Barlow, C. D. Carter, R. W. Pitz, “Multiscalar diagnostics in turbulent flames,” in Applied Combustion Diagnostics, K. Kohse Höinghaus, J. B. Jeffries, eds. (Taylor Francis, London, 2002), pp. 384–407.
  17. A. Leipertz, “Temperaturbestimmung in Gasen mittels linearer und nichtlinearer Raman-Prozesse,” Habilitation thesis (Universität Bochum, Bochum, Germany, 1984).
  18. G. Grünefeld, V. Beushausen, P. Andresen, “Interference-free UV-laser-induced Raman and Rayleigh measurements in hydrocarbon combustion using polarisation properties,” Appl. Phys. B 61, 473–478 (1995). [CrossRef]
  19. A. Brockhinke, K. Kohse-Höinghaus, P. Andresen, “Double-pulse one-dimensional Raman-Rayleigh measurement for the detection of temporal and spatial structure in a turbulent H2-air diffusion flame,” Opt. Lett. 21, 2029–2031 (1996). [CrossRef] [PubMed]
  20. M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, “Polarized separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” Proc. Combust. Inst. 26, 2589–2596 (1996).
  21. F. Rabenstein, J. Egermann, A. Leipertz, N. D’Alfonso, “Vapor-phase structures of diesel-type fuel sprays: an experimental analysis,” in 1998 SAE International Fall Fuel and Lubricants Meeting and Exposition, San Francisco, Calif., 19–22 October 1988 (Society of Automotive Engineers, Warrendale, Pa. 15096), paper 982543.
  22. F. Rabenstein, A. Leipertz, “One-dimensional, time-resolved Raman measurements in a sooting flame made with 355-nm excitation,” Appl. Opt. 37, 4937–4943 (1998). [CrossRef]
  23. J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982). [CrossRef]
  24. A. Ciajolo, A. D’Anna, R. Barbella, A. Tregrossi, “The formation of aromatic carbon in sooting ethylene flames,” Proc. Combust. Inst. 25, 679–685 (1994).
  25. F. Lipp, E. P. Hassel, J. Janicka, “Comparison of UV Raman Spectroscopy with 248 nm and 308 nm for determination of flame temperature and concentrations,” in Proceedings of Joint Meeting of the British and German Sections of the Combustion Institute (Combustion Institute, Cambridge, UK, 1993), pp. 255–258.
  26. W. Meier, O. Keck, “Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths,” Meas. Sci. Technol. 13, 741–749 (2002). [CrossRef]
  27. C. Dreyer, T. Parker, M. A. Linne, “Raman scattering at 532 and 355 nm in atmospheric pressure propane-air flames, with and without liquid fuels,” Appl. Phys. B 79, 121–120 (2004). [CrossRef]
  28. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand, Princeton, N.J., 1966).
  29. G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1966).
  30. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).
  31. R. J. Santoro, C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics, K. Kohse Höinghaus, J. B. Jeffries, eds. (Taylor Francis, London, 2002), pp. 252–286.
  32. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed. (Academic, New York, 1971).
  33. L. Petarca, F. Marconi, “Fluorescence spectra of polycyclic aromatic species in an n-heptane diffusion flame,” Combust. Flame 78, 308–325 (1989). [CrossRef]
  34. P.-E. Bengtsson, M. Alden, “Optical investigation of laser-produced C2 in premixed sooty ethylene flames,” Combust. Flame 80, 322–328 (1990). [CrossRef]
  35. W. M. Hetherington, G. M. Korenowsky, K. B. Eisenthal, “Picosecond CARS as a probe of the multiphoton photofragmentation of benzene,” Chem. Phys. Lett. 77, 275–279 (1981). [CrossRef]
  36. W. L. Faust, L. S. Goldberg, B. B. Craig, R. G. Weiss, “Time-resolved diatomic carbon Swan emission from short-pulse UV fragmentation of carbon monoxide: evidence for two diatomic carbon formation mechanisms,” Chem. Phys. Lett. 83, 265–269 (1981). [CrossRef]
  37. P. E. Bengtsson, “On the use of laser techniques in the diagnostics of sooting flames,” Ph.D. dissertation (Lund Institute of Technology, Lund, Sweden, 1991).
  38. S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998). [CrossRef]
  39. M. Alden, P. E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989). [CrossRef] [PubMed]
  40. A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen-oxygen rotational coherent anti-Stokes Raman scattering for temperature to high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997). [CrossRef] [PubMed]
  41. G. Zikratov, F.-Y. Yueh, J. P. Singh, O. P. Norton, R. A. Kumar, R. L. Cook, “Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces,” Appl. Opt. 38, 1467–1475 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited