OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 3 — Jan. 20, 2004
  • pp: 542–554

Optical fiber probe for biomedical Raman spectroscopy

Jason T. Motz, Martin Hunter, Luis H. Galindo, Joseph A. Gardecki, John R. Kramer, Ramachandra R. Dasari, and Michael S. Feld  »View Author Affiliations


Applied Optics, Vol. 43, Issue 3, pp. 542-554 (2004)
http://dx.doi.org/10.1364/AO.43.000542


View Full Text Article

Enhanced HTML    Acrobat PDF (269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In vitro experiments have demonstrated the ability of Raman spectroscopy to diagnose a wide variety of diseases. Recent in vivo investigations performed with optical fiber probes were promising but generally limited to easily accessible organs, often requiring relatively long collection times. We have implemented an optical design strategy to utilize system throughput fully by characterizing the Raman distribution from tissue. This scheme optimizes collection efficiency, minimizes noise, and has resulted in small-diameter, highly efficient Raman probes that are capable of collecting high-quality data in 1 s. Performance has been tested through simulations and experiments with tissue models and several in vitro tissue types, demonstrating that this new design can advance Raman spectroscopy as a clinically practical technique.

© 2004 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(170.5660) Medical optics and biotechnology : Raman spectroscopy

Citation
Jason T. Motz, Martin Hunter, Luis H. Galindo, Joseph A. Gardecki, John R. Kramer, Ramachandra R. Dasari, and Michael S. Feld, "Optical Fiber Probe for Biomedical Raman Spectroscopy," Appl. Opt. 43, 542-554 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-3-542


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45, R1–R59 (2000). [CrossRef] [PubMed]
  2. A. Mahadevan-Jansen and R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996). [CrossRef] [PubMed]
  3. H. P. Buschman, J. T. Motz, G. Deinum, T. J. Römer, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, “Diagnosis of human coronary atherosclerosis by morphology-based Raman spectroscopy,” Cardiovasc. Pathol. 10, 59–68 (2001). [CrossRef] [PubMed]
  4. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62, 5375–5380 (2002). [PubMed]
  5. R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. Dasari, and M. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998). [CrossRef] [PubMed]
  6. T. J. Römer, J. F. B. Brennan, M. Fitzmaurice, M. L. Feldstein, G. Deinum, J. L. Myles, J. R. Kramer, R. S. Lees, and M. S. Feld, “Histopathology of human coronary atherosclerosis by quantifying its chemical composition with Raman spectroscopy,” Circulation 97, 878–885 (1998). [CrossRef] [PubMed]
  7. P. Libby, “Molecular bases of the acute coronary syndromes,” Circulation 91, 2844–2850 (1995). [CrossRef] [PubMed]
  8. J. M. Mann and M. J. Davies, “Vulnerable plaque: relation of characteristics to degree of stenosis in human coronary arteries,” Circulation 94, 928–931 (1996). [CrossRef] [PubMed]
  9. M. Shim and B. Wilson, “Development of an in vivo Raman spectroscopic system for diagnostic applications,” J. Raman Spectrosc. 28, 131–142 (1997). [CrossRef]
  10. M. Shim, B. Wilson, E. Marple, and M. Wach, “Study of fiber-optic probes for in vivo medical Raman spectroscopy,” Appl. Spectrosc. 53, 619–627 (1999). [CrossRef]
  11. J. Y. Ma and Y. S. Li, “Optical-fiber Raman probe with low-background interference by spatial optimization,” Appl. Spectrosc. 48, 1529–1531 (1994). [CrossRef]
  12. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. 1. Model for liquids and transparent solids,” Appl. Spectrosc. 50, 836–848 (1996). [CrossRef]
  13. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. 2. Tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes,” Appl. Spectrosc. 50, 849–860 (1996). [CrossRef]
  14. U. Utzinger and R. Richards-Kortum, “Fiber optic probes for biomedical spectroscopy,” J. Biomed. Opt. 8, 121–147 (2003). [CrossRef] [PubMed]
  15. M. G. Shim, L.-M. W. K. Song, N. E. Marcon, and B. C. Wilson, “In vivo near-infrared Raman spectroscopy: demonstration of feasibility during clinical gastrointestinal endoscopy,” Photochem. Photobiol. 72, 146–150 (2000). [PubMed]
  16. P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4, S31–S39 (1998). [CrossRef]
  17. P. J. Caspers, G. W. Lucassen, H. A. Bruining, and G. J. Puppels, “Automated depth-scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin,” J. Raman Spectrosc. 31, 813–818 (2000). [CrossRef]
  18. T. R. Hata, T. A. Scholz, I. V. Ermakov, R. W. McClane, F. Khachik, W. Gellermann, and L. K. Pershing, “Non-invasive Raman spectroscopic detection of carotenoids in human skin,” J. Invest. Dermatol. 115, 441–448 (2000). [CrossRef] [PubMed]
  19. U. Utzinger, D. L. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55, 955–959 (2001). [CrossRef]
  20. H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. van der Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000). [CrossRef] [PubMed]
  21. S. W. E. van de Poll, H. P. J. Buschman, M. J. Visser, J. H. van Bockel, A. van der Laarse, A. V. G. Bruschke, and G. J. Puppels, “Raman spectroscopy provides characterization of human atherosclerotic plaque composition in vivo,” J. Am. Coll. Cardiol. 35, 52A (2000).
  22. G. Zhang, S. Demos, and R. Alfano, “Raman spectra of biomedical samples using optical fiber probes,” in Biomedical Sensing, Imaging, and Tracking Technologies II, T. Vo-Dinh, R. Lieberman, and G. Vurek, eds., Proc. SPIE 2976, 2–9 (1997). [CrossRef]
  23. G. Puppels, T. van Aken, R. Wolthuis, P. Caspers, T. Bakker Schutt, H. Bruining, T. Römer, H. Buschman, M. Wach, and J. Robinson, Jr., “In vivo tissue characterization by Raman spectroscopy,” in Infrared Spectroscopy: New Tool in Medicine, H. Mantsch and M. Jackson, eds., Proc. SPIE 3257, 78–83 (1998).
  24. T. C. Bakker Schut, R. Wolthuis, P. J. Caspers, and G. J. Puppels, “Real-time tissue characterization on the basis of in vivo Raman spectra,” J. Raman Spectrosc. 33, 580–585 (2002). [CrossRef]
  25. M. Diem, Introduction to Modern Vibrational Spectroscopy (Wiley, New York, 1993).
  26. R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000). [CrossRef]
  27. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983).
  28. J. Ma and Y. S. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt. 35, 2527–2533 (1996). [CrossRef] [PubMed]
  29. T.-W. Koo, “Measurement of blood analytes in turbid biological tissue using near-infrared Raman spectroscopy,” Ph.D. dissertation (Massachusetts Institute of Technology, Cambridge, Mass., 2001).
  30. J. M. C. van Gemert, R. M. Verdaasdonk, E. G. Stassen, G. A. C. M. Schets, G. H. M. Gijsbers, and J. J. Bonnier, “Optical properties of human blood vessel wall and plaque,” Lasers Surg. Med. 5, 235–237 (1985). [CrossRef] [PubMed]
  31. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  32. J. F. Brennan, Y. Wang, R. R. Dasari, and M. S. Feld, “Near-infrared Raman spectrometer systems for human tissue studies,” Appl. Spectrosc. 51, 201–208 (1997). [CrossRef]
  33. K. E. Shafer-Peltier, A. S. Haka, M. Fitzmaurice, J. Crowe, J. Myles, R. R. Dasari, and M. S. Feld, “Raman microspectroscopic model of human breast tissue: implications for breast cancer diagnosis in vivo,” J. Raman Spectrosc. 33, 552–563 (2002). [CrossRef]
  34. H. P. J. Buschman, G. Deinum, J. T. Motz, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. G. Bruschke, and M. S. Feld, “Raman microspectroscopy of human coronary atherosclerosis: biochemical assessment of cellular and extracellular morphologic structures in situ,” Cardiovasc. Pathol. 10, 69–82 (2001). [CrossRef] [PubMed]
  35. T.-W. Koo, M. Hunter, A. M. K. Enejder, J. Oh, S. Sasic, R. R. Dasari, and M. S. Feld, George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Mass. 02139, are preparing a manuscript to be called “Development of a high sensitivity Raman spectroscopy system for biological studies.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited