OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 3 — Jan. 20, 2004
  • pp: 564–574

Phosphorescence Lifetime Imaging in Turbid Media: The Inverse Problem and Experimental Image Reconstruction

Vadim Y. Soloviev, David F. Wilson, and Sergei A. Vinogradov  »View Author Affiliations


Applied Optics, Vol. 43, Issue 3, pp. 564-574 (2004)
http://dx.doi.org/10.1364/AO.43.000564


View Full Text Article

Acrobat PDF (796 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three-dimensional phosphorescence lifetime imaging is a novel method for the mapping of oxygen concentration in biological tissues. We present reconstruction techniques for recovering phosphorescent objects in highly scattering media based on the telegraph equation and two regularization methods, i.e., the Tikhonov—Phillips regularization and the maximum entropy method. Theoretical results are experimentally validated, and the reconstructed images of phosphorescent objects rendering oxygen maps in a layer are presented.

© 2004 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(290.0290) Scattering : Scattering
(290.7050) Scattering : Turbid media

Citation
Vadim Y. Soloviev, David F. Wilson, and Sergei A. Vinogradov, "Phosphorescence Lifetime Imaging in Turbid Media: The Inverse Problem and Experimental Image Reconstruction," Appl. Opt. 43, 564-574 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-3-564


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. Kress, Linear Integral Equations (Springer-Verlag, Berlin, 1989).
  2. F. Natterer and F. Wubbeling, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001).
  3. J. G. McWhirter and E. R. Pike, “On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind,” J. Phys. A 11, 1729–1745 (1978).
  4. M. Cutler, “Transillumination of the breast,” Surg. Gynecol. Obstet. 48, 721–728 (1929).
  5. U. Hampel, E. Schleicher, and R. Freyer, “Volume image reconstruction for diffuse optical tomography,” Appl. Opt. 41, 3816–3826 (2002).
  6. E. L. Hull, M. G. Nicholas, and T. H. Foster, “Localization of luminescent inhomogeneities in turbud media with spatially resolved measurements of cw diffuse luminescent emittance,” Appl. Opt. 37, 2755–2765 (1998).
  7. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
  8. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
  9. J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, “An optical method for measurement of dioxygen concentration based on quenching of phosphorescence,” J. Biol. Chem. 262, 5476–5482 (1987).
  10. W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson, “Imaging of phosphorescence: a novel method for measuring the distribution of oxygen in perfused tissue,” Science 241, 1649–1651 (1988).
  11. S. A. Vinogradov, L.-W. Lo, W. T. Jenkins, S. M. Evans, C. Koch, and D. F. Wilson, “Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors,” Biophys. J. 70, 1609–1617 (1996).
  12. S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dugan, and D. F. Wilson, “Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples,” Rev. Sci. Instrum. 72, 3396–3406 (2001).
  13. M. Pawlowski and D. F. Wilson, “Monitoring of the oxygen pressure in the blood of live animals using the oxygen dependent quenching of phosphorescence,” Adv. Exp. Med. Biol. 316, 179–183 (1992).
  14. R. D. Shonat, D. F. Wilson, C. E. Riva, and M. Pawlowski, “Oxygen distribution in the retinal and choroidal vessels of the cat as measured by a new phosphorescence imaging method,” Appl. Opt. 31, 3711–3718 (1992).
  15. D. F. Wilson and S. A. Vinogradov, “Tissue oxygen measurements using phosphorescence quenching,” in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel Dekker, New York, 2003), pp. 637–663.
  16. S. A. Vinogradov and D. F. Wilson, “Metallotetrabenzoporphyrins. New phosphorescent probes for oxygen measurements,” J. Chem. Soc. Perkin Trans. 2 2, 103–111 (1994).
  17. S. A. Vinogradov and D. F. Wilson, “Extended porphyrins—new IR phosphors for oxygen measurements,” Adv. Exp. Med. Biol. 411, 597–603 (1997).
  18. O. S. Finikova, A. V. Cheprakov, I. P. Beletskaya, and S. A. Vinogradov, “An expedient synthesis of substituted tetraaryltetrabenzoporphyrins,” Chem. Commun. 3, 261–262 (2001).
  19. I. B. Rietveld, E. Kim, and S. A. Vinogradov, “Dendrimers with tetrabenzoporphyrin cores: near infrared phosphors for in vivo oxygen imaging,” Tetrahedron 59, 3821–3831 (2003).
  20. V. V. Rozhkov, M. Khajehpour, and S. A. Vinogradov, “Luminescent Zn and Pd tetranaphthaloporphyrins,” Inorg. Chem. 42, 4253–4255 (2003).
  21. O. S. Finikova, A. V. Cheprakov, and S. A. Vinogradov, “Novel route to functionalized tetraaryl [2, 3] tetranaphthaloporphyrins via oxidative aromatization,” J. Org. Chem. 68, 7517–7520 (2003).
  22. V. Y. Soloviev, D. F. Wilson, and S. A. Vinogradov, “Phosphorescence lifetime imaging in turbud media: the forward problem,” Appl. Opt. 42, 113–123 (2003).
  23. G. Schears, J. Shen, J. Creed, T. S. Zaitseva, D. F. Wilson, W. J. Greeley, and A. Pastuszko, “Brain oxygenation during cardiopulmonary bypass and circulatory arrest,” Adv. Exp. Med. Biol. 510, 325–330 (2002).
  24. W. M. DeCampli, G. Schears, R. Myung, S. Schultz, J. Creed, A. Pastuszko, and D. F. Wilson, “Tissue oxygen tension during regional low flow perfusion in neonates,” J. Thorac. Cardiovasc. Surg. 125, 472–480 (2003).
  25. T. S. Zaitseva, J. Creed, G. Schears, J. Shen, K. Knight, D. F. Wilson, and A. Pastuszko, “Effect of hypoxia and ischemia on expression of selected genes in brain of newborn piglets,” Adv. Exp. Med. Biol. 510, 319–324 (2003).
  26. E. Shives, Y. Xu, and H. Jiang, “Fluorescence lifetime tomography in turbid media based on an oxygen-sensitive dye,” Opt. Exp. 10, 1557–1562 (2002), http://www.opticsexpress.org.
  27. J. C. Schotland and V. A. Markel, “Inverse scattering with diffusive waves,” J. Opt. Soc. Am. A 18, 2767–2777 (2001).
  28. V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. I. Fourier-Laplace inversion formulas,” J. Opt. Soc. Am. A 18, 1336–1347 (2001).
  29. V. A. Markel and J. C. Schotland, “Inverse problem in optical diffusion tomography. II. Role of boundary conditions,” J. Opt. Soc. Am. A 19, 558–565 (2002).
  30. A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems (Winston, Washington, D.C., 1977).
  31. A. I. Khinchin, Mathematical Foundations of Information Theory (Dover, New York, 1957).
  32. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978).
  33. T. J. R. Hughes, The Finite Element Method (Dover, New York, 2000).
  34. A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, Vol. 120 of Applied Mathematical Sciences (Springer, New York, 1996).
  35. H. W. Engl, “On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed problems,” J. Approx. Theory 49, 55–63 (1987).
  36. H. W. Engl, “Discrepancy principal for Tikhonov regularization of ill-posed problems leading to optimal convergence rates,” J. Optim. Theory Appl. 52, 209–215 (1987).
  37. P. Blomgren and T. F. Chan, “Modular solvers for image restoration problems using the discrepancy principle,” Numer. Linear Algebra Appl. 9, 347–358 (2002).
  38. S. A. Vinogradov and D. F. Wilson, “Recursive maximum entropy algorithm and its application to the luminescence lifetime distribution recovery,” Appl. Spectrosc. 54, 849–855 (2000).
  39. H. Engl and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, Dordrecht, The Netherlands, 2000).
  40. H. W. Engl and G. Landl, “Convergence-rates for maximum-entropy regularization,” SIAM J. Numer. Anal. 30, 1509–1536 (1993).
  41. G. Christakos, Modern Spatiotemporal Geostatistics (Oxford U. Press, London, UK, 2000).
  42. F. M. Ramost, H. F. Campos Velho, J. C. Carvalho, and N. J. Ferreira, “Novel approach to entropic regularization,” Inverse Probl. 15, 1139–1148 (1999).
  43. T. L. Cornwell and K. F. Evans, “A simple maximum entropy deconvolution algorithm,” Astron. Astrophys. 143, 77–83 (1985).
  44. J. Skilling and R. K. Bryan, “Maximum entropy image reconstruction: general algorithm,” Mon. Not. R. Astron. Soc. 211, 111–124 (1984).
  45. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannerly, Numerical Recipes in C. The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992).
  46. V. A. Markel and J. C. Schotland, “Scanning paraxial optical tomography,” Opt. Lett. 27, 1123–1125 (2002).
  47. V. A. Markel and J. C. Schotland, “Effects of sampling and limited data in optical tomography,” Appl. Phys. Lett. 81, 1180–1182 (2002).
  48. I. Dunphy, S. A. Vinogradov, and D. F. Wilson, “Oxyphor R2 and G2: new phosphors for measuring oxygen by oxygen dependent quenching of phosphorescence,” Anal. Biochem. 310, 191–198 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited