OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 3 — Jan. 20, 2004
  • pp: 638–650

Semiactive infrared remote sensing: a practical prototype and field comparison

Timothy J. Johnson, Bruce A. Roberts, and James F. Kelly  »View Author Affiliations

Applied Optics, Vol. 43, Issue 3, pp. 638-650 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (836 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A semiactive method of Fourier-transform infrared (FTIR) remote sensing has been developed and field tested. The method replaces the sender telescope of an active technique with an extended, heated broadband source. The output of the extended source (a commercial griddle) is not collimated and thus facilitates alignment by having the detector optics simply point at the griddle. The present source fills the detector’s field of view at 100 m and maintains a temperature ∼80 K warmer than ambient. In field tests with live CO releases, the method was ∼30 times less sensitive than active methods, but ∼30 times more sensitive than passive methods, with far greater sensitivity in the midwave infrared.

© 2004 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.0300) Spectroscopy : Spectroscopy

Original Manuscript: May 1, 2003
Revised Manuscript: August 19, 2003
Published: January 20, 2004

Timothy J. Johnson, Bruce A. Roberts, and James F. Kelly, "Semiactive infrared remote sensing: a practical prototype and field comparison," Appl. Opt. 43, 638-650 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. M. Russwurm, J. W. Childers, “FT-IR open-path monitoring guidance document,” EPA/600/R-96/040 National Exposure Research Laboratory (U.S. Environmental Protection Agency, Washington, D.C., 1996).
  2. U. Müller, H.-M. Heise, H. Mosebach, A. G. Gartner, T. Hausler, “Improved strategies for quantitative evaluation of atmospheric FTIR spectra obtained in open-path monitoring,” Field Anal. Chem. Technol. 3, 141–159 (1999). [CrossRef]
  3. J. W. Childers, E. L. Thompson, D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke, W. J. Phillips, “Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry,” Atmos. Environ. 35, 1923–1936 (2001). [CrossRef]
  4. T. G. Thorn, T. L. Marshall, C. T. Chaffin, “Open-path FTIR air monitoring of phosphine around large fumigated structures,” Field Anal. Chem. Technol. 5, 116–120 (2001). [CrossRef]
  5. K. S. Bradley, K. B. Brooks, L. K. Hubbard, P. J. Popp, D. H. Stedman, “Motor vehicle fleet emission by OP-FTIR,” Environ. Sci. Technol. 34, 897–899 (2000). [CrossRef]
  6. D. W. T. Griffith, I. M. Jamie, “Fourier transform infrared spectroscopy in atmospheric and trace gas analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, Chichester, UK, 2000).
  7. D. F. Flanigan, “Detection of organic vapors with active and passive sensors: a comparison,” Appl. Opt. 25, 4253–4260 (1986). [CrossRef] [PubMed]
  8. W. F. Herget, “Remote and cross-stack measurement of stack gas concentrations using a mobile FT-IR system,” Appl. Opt. 21, 635–642 (1982). [CrossRef] [PubMed]
  9. D. W. T. Griffith, W. G. Mankin, M. T. Coffey, D. E. Ward, A. Riebau, “FTIR remote sensing of biomass burning emissions of CO2, CO, CH4, CH2O, NO, NO2, NH3 and N2O,” in Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, ed. (MIT, Cambridge, Mass., 1991).
  10. S. P. Love, F. Goff, D. Counce, C. Siebe, H. Delgado, “Passive infrared spectroscopy of the eruption plume at Popocatėpetl volcano, Mexico,” Nature (London) 396, 563–568 (1998). [CrossRef]
  11. F. Goff, S. P. Love, R. G. Warren, D. Counce, J. Obenholzner, C. Siebe, S. C. Schmidt, “Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatėpetl volcano, Mexico,” Chem. Geol. 177, 133–156 (2001). [CrossRef]
  12. D. F. Flanigan, “Prediction of the limits of detection of hazardous vapors by passive infrared with the use of MODTRAN,” Appl. Opt. 35, 6090–6098 (1996). [CrossRef] [PubMed]
  13. J.-M. Thėriault, C. Bradette, L. Moreau, “Passive remote monitoring of chemical vapors with a Fourier transform infrared spectrometer,” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 962–972 (2000). [CrossRef]
  14. J.-M. Thėriault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform interferometer,” Appl. Opt. 38, 505–515 (1999). [CrossRef]
  15. R. Beer, Remote Sensing by Fourier Transform Spectroscopy (Wiley, New York, 1992).
  16. T. J. Johnson, “Methods and systems for remote detection of gases,” U.S. patent application filed, 23April2003.
  17. R. Haus, K. Schäfer, W. Bautzer, J. Heland, H. Moserbach, H. Bittner, T. Eisenmann, “Mobile Fourier-transform infrared spectroscopy monitoring of air pollution,” Appl. Opt. 33, 5682–5689 (1994). [CrossRef] [PubMed]
  18. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with high-resolution interferometer sounder,” Appl. Opt. 27, 3210–3218 (1988). [CrossRef] [PubMed]
  19. A. Beil, R. Daum, T. J. Johnson, “Detection of chemical agents in the atmosphere by passive IR remote sensing,” in Internal Standardization and Calibration Architectures for Chemical Sensors, R. E. Shaffer, R. A. Potyrailo, eds., Proc. SPIE3856, 44–56 (1999). [CrossRef]
  20. F. G. Smith, ed., Atmospheric Propagation of Radiation, Vol. 2 of The Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds., Vol. 10 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 1983).
  21. M. L. Polak, J. L. Hall, K. C. Herr, “Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal,” Appl. Opt. 34, 5406–5412 (1995). [CrossRef] [PubMed]
  22. J. E. Bertie, “Specification of components, methods and parameters in Fourier transform spectroscopy by Michelson and related interferometers,” Pure Appl. Chem. 70, 2039–2045 (1998). [CrossRef]
  23. S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-based Sensor Systems, S. D. Christesen, A. J. Sedlacek, eds., Proc. SPIE4577, 12–24 (2001). [CrossRef]
  24. See the PNNL website http:://nwir.pnl.gov .
  25. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Roderick, P. A. Johnson, “The NIST and PNNL gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc., submitted for publication.
  26. T. J. Johnson, R. L. Sams, T. A. Blake, S. W. Sharpe, P. M. Chu, “Removing aperture-induced artifacts from Fourier transform infrared intensity values,” Appl. Opt. 41, 2831–2839 (2002). [CrossRef] [PubMed]
  27. P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST quantitative infrared database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999). [CrossRef]
  28. S. Wilkinson, “DOE welcomes Hazmat spill research, training,” Chem. Eng. News 75(39), 34–35 (1997). [CrossRef]
  29. A. G. Maki, J. S. Wells, Wavenumber Calibration Tables from Heterodyne Frequency Measurements, NIST Special Pub. 821 (National Institute of Standards and Technology, Gaithersburg, Md., 1991).
  30. C. Chackerian, G. Guelachvili, R. H. Tipping, “CO 1-0 band isotopic lines as intensity standards,” J. Quant. Spectrosc. Radiat. Transfer 30, 107–112 (1983). [CrossRef]
  31. E. L. Dereniak, D. G. Boreman, Infrared Detectors and Systems (Wiley-Interscience, New York, 1996), p. 528 ff.
  32. G. W. Small, R. T. Kroutil, J. T. Ditillo, “Detection of atmospheric pollutants by direct analysis of passive Fourier transform infrared interferograms,” Anal. Chem. 60, 264–269 (1988). [CrossRef] [PubMed]
  33. A. S. Bangalore, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, C. A. Traynor, J. D. Ko, “Automated detection of trichloroethylene by Fourier transform infrared remote sensing measurements,” Anal. Chem. 69, 118–129 (1997), and references therein. [CrossRef]
  34. D. W. T. Griffith, “Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra,” Appl. Spectrosc. 50, 59–70 (1996). [CrossRef]
  35. M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O and CO in air,” Anal. Chem. 72, 206–215 (2000). [CrossRef] [PubMed]
  36. C. D. Whiteman, Mountain Meteorology: Fundamentals and Applications (Oxford U. Press, Oxford, UK, 2000), pp. 212–216.
  37. S.-Y. Chang, T.-L. Tso, J.-G. Lo, “The nonlinearity and related band strength of carbon monoxide when applied in ambient air measurements using open long-path Fourier transform infrared spectroscopy,” J. Air Waste Manage. Assoc. 51, 1332–1338 (2001). [CrossRef]
  38. M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C/12C isotope ratio of CO2,” Anal. Chem. 72, 216–221 (2000). [CrossRef] [PubMed]
  39. K. B. Olson, “Aum Shinrikyo: once and future threat?” Emerg. Infect. Dis. 5, 513–516 (1999). [CrossRef] [PubMed]
  40. P. L. Roney, F. Reid, J.-M. Thėriault, “Transmission window near 2400 cm-1: an experimental and modeling study,” Appl. Opt. 30, 1995–2004 (1991). [CrossRef] [PubMed]
  41. J. B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev. 32, 97–109 (1928). [CrossRef]
  42. T. J. Johnson, F. G. Wienhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited