OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 3 — Jan. 20, 2004
  • pp: 688–694

Production and Characterization of Spiral Phase Plates for Optical Wavelengths

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft  »View Author Affiliations


Applied Optics, Vol. 43, Issue 3, pp. 688-694 (2004)
http://dx.doi.org/10.1364/AO.43.000688


View Full Text Article

Acrobat PDF (404 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the fabrication and characterization of a high-quality spiral phase plate as a device to generate optical vortices of low (3–5) specified charge at visible wavelengths. The manufacturing process is based on a molding technique and allows for the production of high-precision, smooth spiral phase plates as well as for their replication. An attractive feature of this process is that it permits the fabrication of nominally identical spiral phase plates made from different materials and thus yielding different vortex charges. When such a plate is inserted in the waist of a fundamental Gaussian beam, the resultant far-field intensity profile shows a rich vortex structure, in excellent agreement with diffraction calculations based on ideal spiral phase plates. Using a simple optical test, we show that the reproducibility of the manufacturing process is excellent.

© 2004 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4610) Optical design and fabrication : Optical fabrication

Citation
S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, "Production and Characterization of Spiral Phase Plates for Optical Wavelengths," Appl. Opt. 43, 688-694 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-3-688


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformations of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
  2. A. T. O’Neill, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
  3. A. Y. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, and M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Lett. 75, 127–130 (2002).
  4. S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer, F. E. van Dorsselaer, and G. Nienhuis, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3078 (1998).
  5. E. M. Wright, J. Arlt, and K. Dholakia, “Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams,” Phys. Rev. A 63, 013608 (2000).
  6. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
  7. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
  8. J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics, Bristol, UK, 1999).
  9. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
  10. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
  11. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
  12. S. Franke-Arnold, S. M. Barnett, M. J. Padgett, and L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823 (2002).
  13. M. Padgett, J. Courtial, L. Allen, S. Franke-Arnold, and S. M. Barnett, “Entanglement of orbital angular momentum for the signal and idler beams in parametric downconversion,” J. Mod. Opt. 49, 777–785 (2002).
  14. H. H. Arnaut and G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85, 286–289 (2000).
  15. E. R. Eliel, S. M. Dutra, G. Nienhuis, and J. P. Woerdman, “Comment on ‘Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 86, 5208 (2001).
  16. H. H. Arnaut and G. A. Barbosa, “Reply: Arnaut and Barbosa,” Phys. Rev. Lett. 86, 5209 (2001).
  17. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
  18. I. Basistiy, V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
  19. I. Basistiy, M. S. Soskin, and M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995).
  20. A. G. Peele, P. J. McMahon, D. Paterson, C. Q. Tran, A. P. Mancuso, K. A. Nugent, J. P. Hayes, E. Harvey, B. Lai, and I. McNulty, “Observation of an x-ray vortex,” Opt. Lett. 27, 1752–1754 (2002).
  21. S. C. Tidwell, G. H. Kim, and W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
  22. J. Andrea, “Mass-production of diffraction limited replicated objective lenses for compact-disc players,” in Micromachining of Elements with Optical and Other Submicrometer Dimensional and Surface Specifications, M. Weck, ed., Proc. SPIE 803, 3–7 (1987).
  23. T. G. Gijsbers, “COLATH, a numerical controlled lathe for very high precision,” Philips Tech. Rev. 39, 229–244 (1980).
  24. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
  25. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993).
  26. S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Half-integral spiral phase plates for optical wavelengths,” submitted to J. Opt. A.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited