OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 30 — Oct. 20, 2004
  • pp: 5631–5636

Coupling of Light from an LED into a Thin Light Guide by Diffractive Gratings

Samuli Siitonen, Pasi Laakkonen, Pasi Vahimaa, Konstantins Jefimovs, Markku Kuittinen, Marko Parikka, Kari Mönkkönen, and Ahti Orpana  »View Author Affiliations


Applied Optics, Vol. 43, Issue 30, pp. 5631-5636 (2004)
http://dx.doi.org/10.1364/AO.43.005631


View Full Text Article

Acrobat PDF (902 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ring-shaped and radial diffractive gratings are designed with rigorous diffraction theory to couple light of a nearly monochromatic LED into a thin planar light guide on the bottom side. The theoretical coupling efficiencies for ring-shaped and radial gratings are 41% and 66%, respectively. Optimized diffractive elements are manufactured with direct electron-beam lithography and reactive-ion-etching into SiO2 substrates. Good agreement between experimental and theoretical results for selected radial gratings is reached. Furthermore, the mass production tests using injection molding are carried out with good replicability.

© 2004 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(230.1950) Optical devices : Diffraction gratings
(230.7400) Optical devices : Waveguides, slab

Citation
Samuli Siitonen, Pasi Laakkonen, Pasi Vahimaa, Konstantins Jefimovs, Markku Kuittinen, Marko Parikka, Kari Mönkkönen, and Ahti Orpana, "Coupling of Light from an LED into a Thin Light Guide by Diffractive Gratings," Appl. Opt. 43, 5631-5636 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-30-5631


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Parikka, T. Kaikuranta, P. Laakkonen, J. Lautanen, J. Tervo, M. Honkanen, M. Kuittinen, and J. Turunen, “Deterministic diffractive diffusers for displays,” Appl. Opt. 40, 2239–2246 (2001).
  2. W. A. Parkyn, D. G. Pelka, and J. Popovich, “The Black Hole™: cuspated lightguide-injectors and illuminators for LEDs,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE 3781, 183–189 (1999).
  3. T. Tamir, “Beam and lightguide couplers,” in Integrated Optics, T. Tamir, ed. (Springer, New York, 1975), pp. 83–137.
  4. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
  5. M. Neviere, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 123–157.
  6. S. Ura, H. Sunagawa, T. Suhara, and H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
  7. Ph. M. Nellen, K. Tiefenthaler, and W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
  8. R. Waldhäus, B. Schnabel, E.-B. Kley, and A. Bräuer, “Efficient focusing polymer lightguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
  9. J. Backlund, “Multifunctional lightguide grating couplers for integrated optics,” Ph.D. thesis (Chalmers University of Technology, Göteborg, Sweden, 2001).
  10. K. Mönkkönen, J. Hietala, P. Pääkkönen, E. J. Pääkkönen, T. Kaikuranta, T. T. Pakkanen, and T. Jääskeläinen, “Replication of sub-micron structures using amorphous thermoplastics,” Polym. Eng. Sci. 40, 1600–1608 (2002).
  11. J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor & Francis, London, 1997), pp. 31–52.
  12. F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, and H. Launois, “Fabrication of high density nanostructures grating (>500 Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng. 53, 163–166 (2000).
  13. F. Nikolajeff, S. Jacobsson, S. Hård, Å. Billman, L. Lundbladh, and C. Lindell, “Replication of continuous-relief diffractive optical elements by conventional compact disk injection-molding techniques,” Appl. Opt. 36, 4655–4659 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited