OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 30 — Oct. 20, 2004
  • pp: 5647–5654

Generalization of the Jared and Ennis method of complex transmittance objects for the generation of synthetic discriminant function filters

Encarnación Pleguezuelos, Ignasi Labastida, Mario Montes-Usategui, Santiago Vallmitjana, and Artur Carnicer  »View Author Affiliations


Applied Optics, Vol. 43, Issue 30, pp. 5647-5654 (2004)
http://dx.doi.org/10.1364/AO.43.005647


View Full Text Article

Enhanced HTML    Acrobat PDF (358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple method of constructing synthetic discriminant function filters optimized to take into account the modulation of liquid-crystal devices. This relaxation algorithm, a generalization of the Jared and Ennis method, is an iterative method that includes arbitrary modulations for both scene and filter, extending the problem to the complex plane. Simulated and experimental results obtained in a VanderLugt correlator are presented for a two-class recognition problem. The optimal number of images needed to describe an object in a filter generated in this way is discussed, and the influence of the spatial light modulation resolution on the correlation is studied.

© 2004 Optical Society of America

OCIS Codes
(070.4550) Fourier optics and signal processing : Correlators
(070.6110) Fourier optics and signal processing : Spatial filtering
(100.6740) Image processing : Synthetic discrimination functions
(230.3720) Optical devices : Liquid-crystal devices

History
Original Manuscript: February 17, 2004
Revised Manuscript: July 7, 2004
Published: October 20, 2004

Citation
Encarnación Pleguezuelos, Ignasi Labastida, Mario Montes-Usategui, Santiago Vallmitjana, and Artur Carnicer, "Generalization of the Jared and Ennis method of complex transmittance objects for the generation of synthetic discriminant function filters," Appl. Opt. 43, 5647-5654 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-30-5647


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Hester, D. Casasent, “Multivariant technique for multiclass pattern recognition,” Appl. Opt. 19, 1758–1761 (1980). [CrossRef] [PubMed]
  2. Y. N. Hsu, H. H. Arsenault, “Optical character recognition using circular harmonic expansion,” Appl. Opt. 21, 4016–4019 (1982). [CrossRef] [PubMed]
  3. D. Mendlovic, E. Marom, N. Konforti, “Shift and scale invariant pattern recognition using Mellin radial harmonics,” Opt. Commun. 67, 172–176 (1988). [CrossRef]
  4. S. Jutamulia, T. Asakura, “Rotation-invariant joint transform correlator,” Appl. Opt. 33, 5440–5442 (1994). [CrossRef] [PubMed]
  5. R. D. Juday, “Optimal realizable filters and the minimum Euclidean distance principle,” Appl. Opt. 32, 5100–5111 (1993). [CrossRef] [PubMed]
  6. J. L. Horner, P. D. Gianino, “Applying the phase-only filter concept to the synthetic discriminant function correlation filter,” Appl. Opt. 24, 851–855 (1985). [CrossRef] [PubMed]
  7. D. Casasent, W. A. Rozzi, “Computer-generated and phase-only synthetic discriminant function filters,” Appl. Opt. 25, 3767–3772 (1986). [CrossRef] [PubMed]
  8. R. R. Kallman, “Direct construction of phase-only filters,” Appl. Opt. 26, 5200–5201 (1987). [CrossRef] [PubMed]
  9. D. A. Jared, D. J. Ennis, “Inclusion of filter modulation in synthetic-discriminant-function construction,” Appl. Opt. 28, 232–239 (1989). [CrossRef] [PubMed]
  10. M. Montes-Usategui, J. Campos, I. Juvells, “Computation of arbitrarily constrained synthetic discriminant functions,” Appl. Opt. 34, 3904–3914 (1995). [CrossRef] [PubMed]
  11. R. D. Juday, “Generality of matched filtering and minimum Euclidean distance projection for optical pattern recognition,” J. Opt. Soc. Am. A 18, 1882–1896 (2001). [CrossRef]
  12. M. B. Reid, P. W. Ma, J. D. Downie, E. Ochoa, “Experimental verification of modified synthetic discriminant function filters for rotation invariance,” Appl. Opt. 29, 1209–1212 (1990). [CrossRef] [PubMed]
  13. P. C. Miller, R. S. Caprari, “Demonstration of improved automatic target-recognition performance by moment analysis of correlation peaks,” Appl. Opt. 38, 1325–1331 (1999). [CrossRef]
  14. D. W. Carlson, B. V. K. Vijaya Kumar, “Synthetic discriminant functions for implementations on arbitrarily constrained devices,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. SPIE1772, 10–20 (1992). [CrossRef]
  15. C. Zeile, E. Lüder, “Complex transmission of liquid crystal light modulators in optical signal processing applications,” in Liquid Crystal Materials, Devices, and Applications II, U. Efron, M. D. Wand, eds., Proc. SPIE1911, 195–206 (1993). [CrossRef]
  16. E. Martín-Badosa, A. Carnicer, I. Juvells, S. Vallmitjana, “Complex modulation characterization of liquid crystal devices by interferometric data correlation,” Meas. Sci. Technol. 8, 764–772 (1997). [CrossRef]
  17. M. Montes-Usategui, S. E. Monroe, R. D. Juday, “Automated self-alignment procedure for optical correlators,” Opt. Eng. 36, 1782–1791 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited