OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 30 — Oct. 20, 2004
  • pp: 5662–5668

Light scattering on oceanic turbulence

Darek J. Bogucki, Julian A. Domaradzki, Robert E. Ecke, and C. Randal Truman  »View Author Affiliations


Applied Optics, Vol. 43, Issue 30, pp. 5662-5668 (2004)
http://dx.doi.org/10.1364/AO.43.005662


View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Turbulent inhomogeneities of fluid flow have the effect of scattering light in near-forward angles, thus providing an opportunity to use optics to quantify turbulence. Here we report measurements of the volume-scattering function in the range of 10-7 to 10-3 rad using a wave-front sensing technique. The total scattering coefficient b, due to scattering on turbulent inhomogeneities, is between 1 and 10 m-1 under typical oceanographic conditions. The numerical calculations of turbulent volume-scattering functions compare well with the laboratory measurement. These results suggest that optical measurements at small angles are affected by turbulence-related scattering, and their effects can be well modeled with numerical calculations.

© 2004 Optical Society of America

OCIS Codes
(010.7060) Atmospheric and oceanic optics : Turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

History
Original Manuscript: January 12, 2004
Published: October 20, 2004

Citation
Darek J. Bogucki, Julian A. Domaradzki, Robert E. Ecke, and C. Randal Truman, "Light scattering on oceanic turbulence," Appl. Opt. 43, 5662-5668 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-30-5662


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. H. Wells, “Theory of small-angle scattering,” in Electromagnetics of the Sea (Advisory Group for Aerospace Research and Development, North Atlantic Treaty Organization, Neuilly-Sur-Seine, France, 1973), pp. 35–50.
  2. R. V. Ozmidov, “On the turbulent exchange in a stably stratified ocean,” Izv. Ross. Akad. Nauk Atmos. Oceanic Phys. 1, 493–497 (1965).
  3. D. Bogucki, J. A. Domaradzki, D. Stramski, R. Zaneveld, “Comparison of near-forward scattering on turbulence and particles,” Appl. Opt. 37, 4669–4677 (1998). [CrossRef]
  4. V. I. Tatarski, in Wave Propagation in Turbulent Media (McGraw-Hill, New York, 1961), p. 520.
  5. R. E. Hufnagel, N. R. Stanley, “Modulation transfer function associated with image transmission through turbulent media,” J. Opt. Soc. Am. 54, 52–61 (1963). [CrossRef]
  6. T. M. Dillon, D. R. Caldwell, “The Batchelor spectrum and dissipation in the upper ocean,” J. Geophys. Res. 85, 1910–1916 (1980). [CrossRef]
  7. D. Bogucki, A. Domaradzki, P. K. Yeung, “Direct numerical simulations of passive scalars with Pr > 1 advected by turbulent flow,” J. Fluid Mech. 343, 111–130 (1997). [CrossRef]
  8. R. C. Millard, G. Seaver, “An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and wavelength,” Deep-Sea Res. 37, 1909–1926 (1990). [CrossRef]
  9. Z. A. Daya, R. E. Ecke, “Prandtl-number dependence of interior temperature and velocity fluctuations in turbulent convection,” Phys. Rev. E 66, 45301–45303 (2002). [CrossRef]
  10. G. Willis, J. Deardorff, “Investigation of turbulent thermal convection between horizontal plates,” J. Fluid Mech. 28, 675–704 (1967). [CrossRef]
  11. F. Heslot, B. Castaing, A. Libchaber, “Transitions to turbulence in Helium gas,” Phys. Rev. A 36, 5870–5873 (1987). [CrossRef] [PubMed]
  12. D. R. Neal, T. J. OHern, J. R. Torczynski, M. E. Warren, R. Shul, T. S. McKechnie, “Wavefront sensors for optical diagnostics in fluid mechanics: application to heated flow, turbulence and droplet evaporation,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2005, 194–203 (1993). [CrossRef]
  13. R. E. Walker, Marine Light Field Statistics (Wiley-Interscience, New York, 1994).
  14. T. Eidson, “Numerical simulation of the turbulent Rayleigh-Bénard problem,” J. Fluid Mech. 158, 245–253 (1985). [CrossRef]
  15. J. Domaradzki, R. Metcalfe, “Direct numerical simulations of the effects of shear on turbulent Rayleigh-Bénard convection,” J. Fluid Mech. 193, 499–501 (1988). [CrossRef]
  16. S. Christie, J. Domaradzki, “Numerical evidence for nonuniversality of the soft/hard turbulence classification for thermal convection,” Phys. Fluids 5, 412–415 (1993). [CrossRef]
  17. R. Kerr, “Rayleigh number scaling in numerical convection,” J. Fluid Mech. 310, 139–158 (1996). [CrossRef]
  18. B. Castaing, G. Gunaratne, F. Heslot, L. Kadanoff, A. Libchaber, S. Thomae, X. Wu, S. Zaleski, G. Zanetti, “Scaling of hard turbulence in Rayleigh-Bérnard convection,” J. Fluid Mech. 204, 1–31 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited