OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 30 — Oct. 20, 2004
  • pp: 5712–5721

Spectral airglow temperature imager (SATI): a ground-based instrument for the monitoring of mesosphere temperature

Stoyan I. Sargoytchev, Stephen Brown, Brian H. Solheim, Young-Min Cho, Gordon G. Shepherd, and Maria Jose López-González  »View Author Affiliations

Applied Optics, Vol. 43, Issue 30, pp. 5712-5721 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral airglow temperature imager is a two-channel, Fabry-Perot spectrometer with an annular field of view and a cooled CCD detector. The detected fringe pattern contains spectral information in the radial direction and azimuthal spatial information from the annular field of view. The instrument measures the rotational temperature from the O2 atmospheric (0,1) nightglow emission layer at 94 km and from the Q branch of the OH Meinel (6,2) band emission layer at 87 km. The method for temperature derivation is based on the temperature dependence of the line-emission rates. This dependence allows a determination of the temperature by a least-squares fit of the measured spectrum to a set of synthetic spectra, an approach that minimizes the effect of noise from the sky background and the detector. The spectral airglow temperature imager was developed to meet a need for monitoring the role of the mesosphere in climate variability through long-term observation of the mean temperature and the gravity waves from a single station, as well as large-scale wave perturbations through the use of multiple stations.

© 2004 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Original Manuscript: July 16, 2003
Revised Manuscript: April 9, 2004
Published: October 20, 2004

Stoyan I. Sargoytchev, Stephen Brown, Brian H. Solheim, Young-Min Cho, Gordon G. Shepherd, and Maria Jose López-González, "Spectral airglow temperature imager (SATI): a ground-based instrument for the monitoring of mesosphere temperature," Appl. Opt. 43, 5712-5721 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. G. Shepherd, B. Reid, S. Zhang, B. H. Solheim, G. G. Shepherd, “Retrieval and validation of mesospheric temperatures from wind imaging interferometer observations,” J. Geophys. Res. 106, 24813–24829 (2001). [CrossRef]
  2. G. G. Shepherd, M. E. Hagan, Y. Portnyagin, “PSMOS 2000 Workshop—planetary scale mesopause observing system,” J. Atmos. Solar-Terr. Phys. 64, 873–874 (2002).
  3. C. O. Hines, D. W. Tarasick, “On the detection and utilization of gravity waves in airglow studies,” Planet. Space Sci. 35, 851–866 (1987). [CrossRef]
  4. K. Shiokawa, “Development of optical mesosphere thermosphere imagers (OMTI),” Earth Planets Space 51, 887–896 (1999).
  5. G. G. Shepherd, Spectral Imaging of the Atmosphere, Vol. 82 of the International Geophysics Series (Academic, San Diego, Calif., 2002).
  6. G. Hernandez, Fabry-Perot Interferometers (Cambridge U. Press, Cambridge, 1986).
  7. G. Hernandez, “Lower-thermosphere temperatures determined from line profiles of OI 17,924-K (5577-Å) emission in night sky 1. Long-term behavior,” J. Geophys. Res. 81, 5165–5172 (1976). [CrossRef]
  8. P. F. B. Williams, “OH rotational temperatures at Davis, Antarctica, via scanning spectrometer,” Planet. Space Sci. 44, 163–170 (1996). [CrossRef]
  9. Q. Wu, T. L. Killeen, D. McEwen, S. C. Solomon, W. Guo, G. G. Sivjee, J. M. Reeves, “Observation of the mesospheric and lower thermospheric 10-hour wave in the northern polar region,” J. Geophys. Res. 107(A6), (2002). [CrossRef]
  10. D. N. Turnbull, R. P. Lowe, “Temporal variation in the hydroxyl nightglow observed during Aloha-90,” Geophys. Res. Lett. 18, 1345–1348 (1991). [CrossRef]
  11. P. J. Espy, J. Stegman, “Trends and variability of mesospheric temperature at high latitudes,” Phys. Chem. Earth 27, 543–553 (2002). [CrossRef]
  12. H. Takahashi, P. P. Batista, R. A. Buriti, D. Gobbi, T. Nakamura, T. Tsuda, S. Fukao, “Response of the airglow OH emission, temperature and mesopause wind to the atmospheric wave propagation over Shigaraki, Japan,” Earth Planets Space 51, 863–875 (1999).
  13. R. H. Wiens, S.-P. Zhang, R. N. Peterson, G. G. Shepherd, “MORTI: a mesopause oxygen rotational temperature imager,” Planet. Space Sci. 39, 1363–1375 (1991). [CrossRef]
  14. S. M. L. Melo, R. P. Lowe, W. R. Pendleton, M. J. Taylor, B. Williams, C. Y. She, “Effects of a large mesospheric temperature enhancement on the hydroxyl rotational temperature as observed from the ground,” J. Geophys. Res. 106, 30381–30388 (2001).
  15. G. G. Shepherd, C. W. Lake, J. R. Miller, L. L. Cogger, “A spatial spectral scanning technique for the Fabry-Perot spectrometer,” Appl. Opt. 4, 267–272 (1965). [CrossRef]
  16. R. H. Wiens, S. Brown, S. Sargoytchev, R. N. Peterson, W. A. Gault, G. G. Shepherd, “SATI—spectral airglow temperature imager,” in P. B. Hays, J. Wang, eds., Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, Proc. SPIE2830, 341–344 (1996). [CrossRef]
  17. R. H. Wiens, A. Moise, S. Brown, S. Sargoytchev, R. N. Peterson, G. G. Shepherd, M. J. López-González, J. J. López-Moreno, R. Rodrigo, “SATI: a spectral airglow temperature imager,” Adv. Space Res. 19, 677–680 (1997). [CrossRef]
  18. P. H. Lissberger, “Effective refractive index as a criterion of performance of an interference filter,” J. Opt. Soc. Am. 58, 1586–1590 (1968). [CrossRef]
  19. R. L. Gattinger, Synthetic Spectrum of an O2 Atmospheric System (Herzberg Institute of Astrophysics Software, Ottawa, Canada, 1984).
  20. S.-P. Zhang, Gravity Waves from O2 Airglow, Ph.D. dissertation (York University, Toronto, Ontario, Canada, 1991).
  21. S.-P. Zhang, R. N. Peterson, R. H. Wiens, G. G. Shepherd, “Gravity waves from O2 nightglow during the AIDA ’89 campaign I: emission rate/temperature observations,” J. Atmos. Solar-Terr. Phys. 55, 355–376 (1993). [CrossRef]
  22. M. J. López-González, E. Rodriguez, R. H. Wiens, G. G. Shepherd, S. Sargoytchev, S. Brown, M. G. Shepherd, V. M. Aushev, J. J. López-Moreno, R. Rodrigo, Y.-M. Cho, “Seasonal variations of O2 atmospheric and OH(6,2) airglow and temperature at mid-latitude from SATI observations,” Ann. Geophys. 22, 819–828 (2004). [CrossRef]
  23. K. Shiokawa, Y. Otsuka, T. Ogawa, H. Takahashi, T. Nakamura, T. Shimomai, “Comparison of OH rotational temperature measurements by the spectral airglow temperature imager (SATI) and by a tilting-filter photometer,” J. Atmos. Solar-Terr. Phys. 66, 891–897 (2004). [CrossRef]
  24. W. R. Pendleton, M. J. Taylor, “The impact of L-uncoupling on Einstein coefficients for the OH Meinel (6,2) band: implications for Q-branch rotational temperatures,” J. Atmos. Solar-Terr. Phys. 64, 971–983 (2002). [CrossRef]
  25. D. E. Osterbrook, R. T. Waters, T. A. Barlow, “Faint emission lines in the blue and red spectral regions of the night airglow,” Publ. Astron. Soc. Pacific112, 733–741 (2000); http://crvax.sri.com/NVAO/download/Osterbrock.html . [CrossRef]
  26. W. J. R. French, G. B. Burns, K. Finlayson, P. A. Greet, R. P. Lowe, P. F. B. Williams, “Hydroxyl (6,2) airglow emission intensity ratios for rotational temperature determination,” Ann. Geophys. 18, 1293–1303 (2000).
  27. See the Bass 2000 Archives, L’Observatoire de Paris, Laboratoire d’Etudes et d’Instrumentation en Astrophysique; http://mesola.obspm.fr/home.php .
  28. Y.-I. Won, Q. Wu, Y.-M. Cho, G. G. Shepherd, T. L. Killeen, P. J. Espy, Y. Kim, B. Solheim, “Polar cap observations of mesospheric and lower thermospheric 4-hour waves in temperature,” Geophys. Res. Lett. 30(7) 30-1–30-4 (2003).
  29. S. Sargoytchev, SATI; http://stpl/cress.yorku.ca .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited