OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 31 — Nov. 1, 2004
  • pp: 5778–5783

Comparison of Two-Color Hologram Lifetimes of Near-Stoichiometric Lithium Niobate and of Tantalate Crystals

Youwen Liu, Kenji Kitamura, Shunji Takekawa, Ganesan Ravi, Masaru Nakamura, Yasunori Furukawa, and Hideki Hatano  »View Author Affiliations


Applied Optics, Vol. 43, Issue 31, pp. 5778-5783 (2004)
http://dx.doi.org/10.1364/AO.43.005778


View Full Text Article

Acrobat PDF (132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lifetimes of two-color nonvolatile holograms recorded in undoped or in slightly doped near-stoichiometric lithium niobate and tantalate crystals were measured and compared by extrapolation of the high-temperature data. A proton-compensation mechanism dominated the dark decay and yielded similar activation energies, of 1.05 and 1.10 eV, for near-stoichiometric lithium niobate and tantalate crystals, respectively. The lifetime of holograms in lithium tantalate was 1 order of magnitude longer than that in lithium niobate with the same proton concentration, which was consistent with our theoretical estimation. The projected lifetime of two-color holograms in lithium tantalate without observable OH<sup>−</sup> absorption is longer than 50 years.

© 2004 Optical Society of America

OCIS Codes
(090.2900) Holography : Optical storage materials
(160.5320) Materials : Photorefractive materials
(210.2860) Optical data storage : Holographic and volume memories

Citation
Youwen Liu, Kenji Kitamura, Shunji Takekawa, Ganesan Ravi, Masaru Nakamura, Yasunori Furukawa, and Hideki Hatano, "Comparison of Two-Color Hologram Lifetimes of Near-Stoichiometric Lithium Niobate and of Tantalate Crystals," Appl. Opt. 43, 5778-5783 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-31-5778


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, Berlin, 2000).
  2. D. von der Linde, A. M. Glass, and K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
  3. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
  4. Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
  5. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
  6. L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
  7. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, and S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
  8. Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, and T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett. 81, 2686–2688 (2002).
  9. Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, “Nonvolatile two-color holographic recording in undoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers,” Appl. Phys. Lett. 82, 4218–4220 (2003).
  10. O. F. Schirmer, O. Thiemann, and M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
  11. K. Polgar, A. Peter, L. Kovacs, G. Corradi, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177, 211–216 (1997).
  12. K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single-crystal growth by double crucible Czochralski method using automatic powder supply-system,” J. Cryst. Growth 116, 327–332 (1992).
  13. H. M. O’Bryan, P. K. Gallagher, and C. D. Brandle, “Congruent composition and Li-rich phase boundary of LiNbO3” J. Am. Ceram. Soc. 68, 493–496 (1985).
  14. M. Nakamura, S. Takekawa, Y. Furukawa, and K. Kitamura, “Influence of powder on radio-frequency power stability and compositional uniformity in near-stoichiometric LiTaO3 crystal grown by double-crucible Czochralski method,” J. Cryst. Growth 245, 267–272 (2002).
  15. K. Kitamura, Y. Liu, S. Takekawa, G. Ravi, M. Nakamura, and H. Hatano, “Effect of annealing treatment on two-color holographic storage performance in Mn-doped near-stoichiometric LiNbO3 crystals,” in Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, and G. Montemezzani, eds., Vol. 87 of OSA Proceedings Series(Optical Society of America, Washington, D.C., 2003), pp. 666–670.
  16. J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
  17. H. Vormann, G. Weber, S. Kapphan, and E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
  18. Y. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electric dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
  19. Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, and K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B 20, 1491–1502 (2003).
  20. J. R. Herrington, B. Bischler, A. Räuber, and J. Schneider, “An optical study of the stretching absorption band near 3 micron from OH defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
  21. L. Kovacs, M. Wöhlecke, J. Jovanovic, K. Polgar, and S. Kapphan, “Infrared absorption study of the OH vibration band in LiNbO3 crystals,” J. Phys. Chem. Solids 52, 797–803 (1991).
  22. Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura, and S. Kimura, “Defect structure in LiNbO3,” J. Phys. Condens. Matter 7, 3627–3635 (1995).
  23. S. Kapphan and A. Breitkopf, “PE-layers and proton diffusion profiles in LiNbO3 investigated with Fourier-IR and second harmonic-generation,” Phys. Status Solidi A 133, 159–166 (1992).
  24. Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, “Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals,” J. Appl. Phys. 95, 7637–7644 (2004).
  25. D. L. Staebler and J. J. Amodei, “Thermal fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
  26. P. J. Matthews and A. R. Mickelson, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
  27. S. Klauer, M. Wöhlecke, and S. Kapphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys Rev. B 45, 2786–2799 (1992).
  28. L. Kovacs, K. Polgar, R. Capelletti, and C. Mora, “Diffusion of hydrogen isotopes in pure and Mg-doped LiNbO3 crystals,” Phys. Status Solidi A 120, 97–104 (1990).
  29. G. Mandula, K. Lengyel, L. Kovacs, M. Ellabban, R. A. Rupp, and M. Fally, “Thermal fixing of holographic gratings in nearly stoichiometric LiNbO3 crystals,” in International Conference on Solid State Crystals 2000: Growth, Characterization and Applications of Single Crystals, A. Rogalski, K. Adamiec, and P. Madejczyk, eds., Proc. SPIE 4412, 226–230 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited