OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 31 — Nov. 1, 2004
  • pp: 5784–5795

N-ocular volume holographic imaging

Arnab Sinha and George Barbastathis  »View Author Affiliations


Applied Optics, Vol. 43, Issue 31, pp. 5784-5795 (2004)
http://dx.doi.org/10.1364/AO.43.005784


View Full Text Article

Enhanced HTML    Acrobat PDF (2117 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Volume holographic imaging utilizes Bragg selectivity to optically slice the object space of the imaging system and measure four- (three spatial and one spectral) dimensional object information. The N-ocular version of this method combines multiple-volume holographic sensors and digital postprocessing to yield high-resolution three-dimensional images for broadband objects located at long working distances. We discuss the physical properties of volume holography pertinent to imaging performance and describe two computational algorithms for image inversion based on filtered backprojection and least-squares optimization.

© 2004 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(110.0110) Imaging systems : Imaging systems
(110.6770) Imaging systems : Telescopes

History
Original Manuscript: March 1, 2004
Revised Manuscript: August 1, 2004
Manuscript Accepted: August 18, 2004
Published: November 1, 2004

Citation
Arnab Sinha and George Barbastathis, "N-ocular volume holographic imaging," Appl. Opt. 43, 5784-5795 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-31-5784


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Barbastathis, D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proc. IEEE 87, 2098–2120 (1999). [CrossRef]
  2. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966). [CrossRef] [PubMed]
  3. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  4. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393–400 (1963). [CrossRef]
  5. A. Sinha, W. Sun, T. Shih, G. Barbastathis, “Volume holographic imaging in the transmission geometry,” Appl. Opt. 43, 1–19 (2004).
  6. G. Barbastathis, M. Balberg, D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813 (1999). [CrossRef]
  7. W. Liu, D. Psaltis, G. Barbastathis, “Real time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854–856 (2002). [CrossRef]
  8. A. Sinha, G. Barbastathis, “Volume holographic telescope,” Opt. Lett. 27, 1690–1692 (2002). [CrossRef]
  9. A. Sinha, G. Barbastathis, “Volume holographic imaging for surface metrology at long working distances,” Opt. Express 11, 3202–3209 (2003), http://www.opticsexpress.org . [CrossRef] [PubMed]
  10. A. Sinha, W. Sun, G. Barbastathis, “Broadband volume holographic imaging,” Appl. Opt. 43, 5214–5221 (2004). [CrossRef] [PubMed]
  11. M. Born, E. Wolf, Principles of Optics, 7th ed. (Pergamon, Cambridge, UK, 1998).
  12. O. Faugeras, Q.-T. Luong, The Geometry of Multiple Images (MIT Press, Cambridge, Mass., 2001).
  13. U. R. Dhond, J. K. Aggarwal, “Structure from stereo: a review,” IEEE Trans. Syst. Man. Cybern. 14, 1489–1510 (1989). [CrossRef]
  14. J. Aloimonos, I. Weiss, A. Bandyopadhyay, “Active vision,” in Proceedings of IEEE First International Conference on Computer Vision (Institute of Electrical and Electronics Engineers, New York, 1987), pp. 35–54.
  15. N. Ahuja, A. Abbott, “Active stereo: integrating disparity, vergence, focus, aperture, and calibration for surface estimation,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 1007–1029 (1993). [CrossRef]
  16. D. Psaltis, F. Mok, H. Y.-S. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210–212 (1994). [CrossRef] [PubMed]
  17. H. Martin, T. Kanade, “Incremental reconstruction of 3D scenes from multiple, complex images,” Artif. Intell. 30, 289–341 (1986). [CrossRef]
  18. M. V. Klein, T. E. Furtak, Optics (Wiley, New York, 1986).
  19. E. R. Dowski, W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1994). [CrossRef]
  20. N. George, W. Chi, “Extended depth of field using a logarithmic asphere,” J. Opt. A Pure Appl. Opt. 5, S157–S163 (2003). [CrossRef]
  21. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  22. M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, London, 1998). [CrossRef]
  23. G. Barbastathis, A. Sinha, “Information content of volume holographic imaging,” Trends Biotechnol. 19, 383–392 (2001). [CrossRef] [PubMed]
  24. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited