OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 31 — Nov. 1, 2004
  • pp: 5838–5854

Comparison of SeaWiFS measurements of the Moon with the U.S. Geological Survey lunar model

Robert A. Barnes, Robert E. Eplee, Jr., Frederick S. Patt, Hugh H. Kieffer, Thomas C. Stone, Gerhard Meister, James J. Butler, and Charles R. McClain  »View Author Affiliations


Applied Optics, Vol. 43, Issue 31, pp. 5838-5854 (2004)
http://dx.doi.org/10.1364/AO.43.005838


View Full Text Article

Enhanced HTML    Acrobat PDF (343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) has made monthly observations of the Moon since 1997. Using 66 monthly measurements, the SeaWiFS calibration team has developed a correction for the instrument’s on-orbit response changes. Concurrently, a lunar irradiance model has been developed by the U.S. Geological Survey (USGS) from extensive Earth-based observations of the Moon. The lunar irradiances measured by SeaWiFS are compared with the USGS model. The comparison shows essentially identical response histories for SeaWiFS, with differences from the model of less than 0.05% per thousand days in the long-term trends. From the SeaWiFS experience we have learned that it is important to view the entire lunar image at a constant phase angle from measurement to measurement and to understand, as best as possible, the size of each lunar image. However, a constant phase angle is not required for using the USGS model. With a long-term satellite lunar data set it is possible to determine instrument changes at a quality level approximating that from the USGS lunar model. However, early in a mission, when the dependence on factors such as phase and libration cannot be adequately determined from satellite measurements alone, the USGS model is critical to an understanding of trends in instruments that use the Moon for calibration. This is the case for SeaWiFS.

© 2004 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.5630) Instrumentation, measurement, and metrology : Radiometry

History
Original Manuscript: December 26, 2003
Revised Manuscript: July 12, 2004
Manuscript Accepted: July 27, 2004
Published: November 1, 2004

Citation
Robert A. Barnes, Robert E. Eplee, Frederick S. Patt, Hugh H. Kieffer, Thomas C. Stone, Gerhard Meister, James J. Butler, and Charles R. McClain, "Comparison of SeaWiFS measurements of the Moon with the U.S. Geological Survey lunar model," Appl. Opt. 43, 5838-5854 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-31-5838


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. A. Hovis, D. K. Clark, F. Anderson, R. W. Austin, W. H. Wilson, E. T. Baker, D. Ball, H. R. Gordon, J. L. Mueller, S. Z. El-Sayed, B. Sturm, R. C. Wrigley, C. S. Yentsch, “Nimbus-7 Coastal Zone Color Scanner: system description and initial imagery,” Science 210, 60–62 (1980). [CrossRef] [PubMed]
  2. C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. B. Hooker, B. G. Mitchell, R. Barnes, SeaWiFS Calibration and Validation Plan, NASA Tech. Memo. 104566, Vol. 3, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1992).
  3. R. A. Barnes, W. L. Barnes, W. E. Esaias, C. R. McClain, Prelaunch Acceptance Report for the SeaWiFS Radiometer, NASA Tech. Memo. 104566, Vol. 22, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  4. H. H. Kieffer, “Photometric stability of the lunar surface,” Icarus 130, 323–327 (1997). [CrossRef]
  5. H. H. Kieffer, T. C. Stone, R. A. Barnes, S. Bender, R. E. Eplee, J. Mendenhall, L. Ong, “On-orbit radiometric calibration over time and between spacecraft using the Moon,” in Sensors, Systems, and Next-Generation Satellites VI, H. Fujisada, J. B. Lurie, M. L. Aten, K. Weber, eds., Proc. SPIE4881, 287–298 (2003). [CrossRef]
  6. T. C. Stone, H. H. Kieffer, “Absolute irradiance of the Moon for on-orbit calibration,” in Earth Observing Systems VII, W. L. Barnes, ed., Proc. SPIE4814, 211–221 (2002). [CrossRef]
  7. R. A. Barnes, A. W. Holmes, W. L. Barnes, W. E. Esaias, C. R. McClain, T. Svitek, SeaWiFS Prelaunch Radiometric Calibration and Spectral Characterization, NASA Tech. Memo. 104566, Vol. 23, S. B. Hooker, E. R. Firestone, J. G. Acker, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1994).
  8. R. A. Barnes, R. E. Eplee, G. M. Schmidt, F. S. Patt, C. R. McClain, “Calibration of SeaWiFS. I. Direct techniques,” Appl. Opt. 40, 6682–6700 (2001). [CrossRef]
  9. R. A. Barnes, R. E. Eplee, F. S. Patt, “SeaWiFS measurements of the Moon,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 311–324 (1998). [CrossRef]
  10. R. A. Barnes, R. E. Eplee, F. S. Patt, C. R. McClain, “Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements,” Appl. Opt. 38, 4649–4664 (1999). [CrossRef]
  11. P. Helfenstein, J. Veverka, “Photometric properties of lunar terrains derived from Hapke’s equations,” Icarus 72, 342–357 (1987). [CrossRef]
  12. A. P. Lane, W. M. Irvine, “Monochromatic phase curves and albedos for the lunar disk,” Astron. J. 78, 267–277 (1973). [CrossRef]
  13. R. A. Barnes, C. R. McClain, “The calibration of SeaWiFS after two years on orbit,” in Sensors, Systems, and Next-Generation Satellites III, H. Fujisada, ed., Proc. SPIE3870, 214–227 (1999). [CrossRef]
  14. C. R. McClain, E. J. Ainsworth, R. A. Barnes, R. E. Eplee, F. S. Patt, W. D. Robinson, M. Wang, S. W. Bailey, SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1, NASA Tech. Memo. 2000-206892, Vol. 9, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 2000).
  15. R. E. Eplee, R. A. Barnes, F. S. Patt, G. Meister, C. R. McClain, “SeaWiFS lunar calibration methodology after six years on orbit,” in Earth Observing Systems IX, W. L. Barnes, J. J. Butler, eds., Proc. SPIE5542 (to be published).
  16. B. J. Buratti, J. K. Hillier, M. Wang, “The lunar opposition surge: observations by Clementine,” Icarus 124, 490–499 (1996). [CrossRef]
  17. R. H. Evans, H. R. Gordon, “Coastal Zone Color Scanner ‘system calibration’: a retrospective examination,” J. Geophys. Res. 99, 7293–7307 (1994). [CrossRef]
  18. R. A. Barnes, E. F. Zalewski, “Reflectance-based calibration of SeaWiFS. I. Calibration coefficients,” Appl. Opt. 42, 1629–1647 (2003). [CrossRef] [PubMed]
  19. R. A. Barnes, R. E. Eplee, S. F. Biggar, K. J. Thome, P. N. Slater, A. W. Holmes, “SeaWiFS transfer-to-orbit experiment,” Appl. Opt. 39, 5620–5631 (2000). [CrossRef]
  20. H. H. Kieffer, J. M. Anderson, “Use of the Moon for spacecraft calibration over 350–2500 nm,” in Sensors, Systems, and Next Generation Satellites II, H. Fujisada, ed., Proc. SPIE3498, 325–336 (1998). [CrossRef]
  21. J. M. Anderson, K. J. Becker, H. H. Kieffer, D. N. Dodd, “Real-time control of the Robotic Lunar Observatory,” Publ. Astron. Soc. Pac. 111, 737–749 (1999). [CrossRef]
  22. T. C. Stone, H. H. Kieffer, K. J. Becker, “Modeling the radiance of the Moon for on-orbit calibration,” in Earth Observing Systems VIII, W. L. Barnes, ed., Proc. SPIE5151, 463–470 (2003). [CrossRef]
  23. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, T. Limperis, Geometrical Considerations and Nomenclature for Reflectance, NBS Monogr. 160 (National Bureau of Standards, Washington, D.C., 1977).
  24. P. Y. Barnes, E. A. Early, A. C. Paar, Spectral Reflectance, NIST Spec. Publ. SP 250-48 (National Institute of Standards and Technology, Gaithersburg, Md., 1998).
  25. R. A. Barnes, “SeaWiFS data: actual and simulated” (NASA Goddard Space Flight Center, Greenbelt, Md., 1994), available from http://seawifs.gsfc.nasa.gov/SEAWIFS/IMAGES/spectra1.dat and /spectra2.dat .
  26. C. Wehrli, “Spectral solar irradiance data,” World Climate Research Program (WCRP)Publ. Ser. 7, WMO ITD 149 (World Meteorological Organization, Geneva, Switzerland, 1986), pp. 119–126.
  27. A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran7,” Tech. Rep. GL-TR-90-0122 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1989).
  28. G. Thuillier, M. Hersé, P. C. Simon, D. Labs, H. Mandel, D. Gillotay, T. Foujols, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions,” Sol. Phys. 214, 1–22 (2003). [CrossRef]
  29. R. A. Barnes, E. F. Zalewski, “Reflectance-based calibration of SeaWiFS. II. Conversion to radiance,” Appl. Opt. 42, 1648–1660 (2003). [CrossRef] [PubMed]
  30. B. C. Johnson, E. A. Early, R. E. Eplee, R. A. Barnes, R. T. Caffrey, The 1997 Prelaunch Calibration of SeaWiFS, NASA Tech. Memo. 1999-206892, Vol. 4, S. B. Hooker, E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Md., 1999).
  31. F. S. Patt, R. A. Barnes, R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, S. W. Bailey, J. Gales, P. J. Werdell, M. Wang, R. Frouin, R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, V. Ransibrahmanakul, J. E. O’Reilly, J. A. Yoder, in Algorithm Updates for the Fourth SeaWiFS Data Reprocessing, NASA Tech. Memo. 2003-206892, Vol. 22, S. B. Hooker, E. R. Firestone, eds. (Goddard Space Flight Center, Greenbelt, Md., 2003).
  32. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “Calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt. 40, 6701–6718 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited