OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 31 — Nov. 1, 2004
  • pp: 5864–5869

Multireflection pumping concept for miniaturized diode-pumped solid-state lasers

Jörg Meister, Rene Franzen, Christian Apel, and Norbert Gutknecht  »View Author Affiliations


Applied Optics, Vol. 43, Issue 31, pp. 5864-5869 (2004)
http://dx.doi.org/10.1364/AO.43.005864


View Full Text Article

Enhanced HTML    Acrobat PDF (404 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An innovative pump concept for diode-pumped, solid-state lasers is introduced as an example for an Er:YSGG laser, permitting its miniaturization. Embedded in a multireflective pump cavity, the laser crystal is simultaneously side and end pumped. Specially calculated and shaped deflecting optics distribute the coaxially input pumping light homogeneously over the lateral surface of the crystal, therefore reducing the size of the laser head, including the optical resonator, to a length of 27.5 mm and an outside diameter of 12.5 mm. The differential efficiency achieved is between 8.7% and 24%. The laser emits energy of 15.7 mJ at an absolute efficiency of 9.1% and a repetition rate of 4 Hz.

© 2004 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3500) Lasers and laser optics : Lasers, erbium
(140.5560) Lasers and laser optics : Pumping
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(220.4830) Optical design and fabrication : Systems design

History
Original Manuscript: April 13, 2004
Revised Manuscript: July 22, 2004
Manuscript Accepted: August 3, 2004
Published: November 1, 2004

Citation
Jörg Meister, Rene Franzen, Christian Apel, and Norbert Gutknecht, "Multireflection pumping concept for miniaturized diode-pumped solid-state lasers," Appl. Opt. 43, 5864-5869 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-31-5864


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975). [CrossRef]
  2. A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977). [CrossRef]
  3. K. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-state emission from a Y3AL5O12:Er3+ laser (λ = 2.94 μm, T = 300 K),” Sov. J. Quantum Electron. 13, 262–263 (1983). [CrossRef]
  4. B. Majaron, T. Rupnik, M. Lukac, “Temperature and gain dynamics in flashlamp-pumped Er:YAG,” IEEE J. Quantum Electron. 32, 1636–1644 (1996). [CrossRef]
  5. P. F. Moulton, J. G. Manni, G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24, 960–973 (1988). [CrossRef]
  6. G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-wave and pulsed 2.8-μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987). [CrossRef]
  7. B. J. Dinerman, P. F. Moulton, “3-μm cw laser operation in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19, 1143–1145 (1994). [CrossRef] [PubMed]
  8. S. Wüthrich, W. Lüthy, H. P. Weber, “Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 μm,” J. Appl. Phys. 68, 5467–5471 (1990). [CrossRef]
  9. R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8-μm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992). [CrossRef]
  10. T. Jensen, V. Ostroumov, G. Huber, “Upconversion processes in Er3+:YSGG and diode pumped laser experiments at 2.8 μm,” in Advanced Solid-State Lasers, B. H. T. Chai, S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 366–370.
  11. R. S. Quimby, W. J. Miniscalco, “Continuous-wave lasing on a self-terminating transition,” Appl. Opt. 28, 14–16 (1989). [CrossRef] [PubMed]
  12. R. C. Stoneman, L. Esterowitz, “Efficient resonantly pumped 2.8-μm Er3+:GSGG laser,” Opt. Lett. 17, 816–818 (1992). [CrossRef] [PubMed]
  13. D.-W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett. 24, 385–387 (1999). [CrossRef]
  14. M. Pollnau, S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers,” IEEE J. Quantum Electron. 38, 162–169 (2002). [CrossRef]
  15. C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger, “Emission properties of an optimized 2.8-μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997). [CrossRef]
  16. M. Pollnau, R. Spring, C. Ghisler, S. Wittwer, W. Lüthy, H. P. Weber, “Efficiency of erbium 3-μm crystal and fiber lasers,” IEEE J. Quantum Electron. 32, 657–663 (1996). [CrossRef]
  17. T. Jensen, A. Diening, G. Huber, B. H. T. Chai, “Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21, 585–587 (1996). [CrossRef] [PubMed]
  18. S. Nikolov, N. P. Schmitt, G. Reithmeier, T. Halldorsson, “Fiber-coupled diode-pumped Er:YSGG laser at 2.8 μm,” in Lasers in Medicine, Lectures at the 10th Conference of the German Society of Laser Medicine and at the 12th International Congress at Laser 95 in Munich (Springer-Verlag, Berlin, 1996), pp. 544–547.
  19. T. Jensen, G. Huber, K. Petermann, “Quasi-cw diode-pumped 2.8-μm laser operation of Er3+-doped garnets,” in Advanced Solid-State Lasers, S. A. Payne, C. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 306–308.
  20. A. Diening, G. Huber, “Small-size high-power diode-pumped erbium 3-μm laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), p. 565.
  21. C. E. Hamilton, R. J. Beach, S. B. Sutton, L. H. Furu, W. F. Krupke, “1-W average power levels and tunability from a diode-pumped 2.94-μm Er:YAG oscillator,” Opt. Lett. 19, 1627–1629 (1994). [CrossRef] [PubMed]
  22. C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-μm Er:YAG laser,” Opt. Lett. 26, 599–601 (2001). [CrossRef]
  23. LAS-CAD GmbH Munich, Lascad 2.7 Manual (LAS-CAD GmbH, Munich, Germany, April2002), p. 18.
  24. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), pp. 406–412. [CrossRef]
  25. Molecular Technology, “Materials for solid-state lasers,” Molecular Technology GmbH, http://www.mt-berlin.com/charts/chart_03.htm (September2003).
  26. Laser Materials Cooperation, “Product brochure,” http://www.lasermaterials.com (September2003).
  27. VLOC, “Product brochure,” subsidiary of II-VI Inc., http://www.vloc.com/pdfs/yagbrochure.pdf (September2003).
  28. B. J. Dinerman, J. Harrison, P. F. Moulton, “Continuous wave and pulsed laser operation at 3 μm in Er3+-doped crystals,” in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 168–170.
  29. T. Jensen, “Upconversion-Prozesse und Wirkungsquerschnitte in Er3+-dotierten 3 μm Fluorid- und Granat-Lasern, gepumpt mit cw und quasi-cw Dioden-Arrays,” Ph.D. dissertation (Institute of Laser Physics, University of Hamburg, Hamburg, Germany, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited