OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 31 — Nov. 1, 2004
  • pp: 5886–5892

Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties

Paul E. Lyon, Frank E. Hoge, C. Wayne Wright, Robert N. Swift, and James K. Yungel  »View Author Affiliations


Applied Optics, Vol. 43, Issue 31, pp. 5886-5892 (2004)
http://dx.doi.org/10.1364/AO.43.005886


View Full Text Article

Enhanced HTML    Acrobat PDF (784 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the upper layer of the global ocean, 2082 in situ chlorophyll biomass values 〈Chl〉 are retrieved by concurrent satellite-derived inherent optical properties (IOP). It is found that (1) the phytoplankton absorption coefficient IOP alone does not provide satisfactory 〈Chl〉 retrieval; (2) the chromophoric dissolved organic matter (CDOM) absorption coefficient IOP must also be used to obtain satisfactory retrieval through 〈Chl〉 ∝ aph + paCDOM where p is a constant and aph and aCDOM are, respectively, the phytoplankton and CDOM absorption coefficients; (3) the IOP-based 〈Chl〉 retrieval performance is comparable to standard satellite reflectance ratio retrievals (that have CDOM absorption intrinsically embedded within them); (4) inclusion of the total backscattering coefficient IOP does not contribute significantly to 〈Chl〉 retrieval; and (5) the new IOP-based algorithm may provide the possibility for future research to establish the actual role of extracellular CDOM from all sources in the intracellular production of chlorophyll biomass.

© 2004 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.6550) Spectroscopy : Spectroscopy, visible

History
Original Manuscript: December 19, 2003
Revised Manuscript: June 15, 2004
Manuscript Accepted: August 19, 2004
Published: November 1, 2004

Citation
Paul E. Lyon, Frank E. Hoge, C. Wayne Wright, Robert N. Swift, and James K. Yungel, "Chlorophyll biomass in the global oceans: satellite retrieval using inherent optical properties," Appl. Opt. 43, 5886-5892 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-31-5886


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998). [CrossRef]
  2. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and the coastal zone color scanner estimates,” Appl. Opt. 22, 20–36 (1983). [CrossRef] [PubMed]
  3. M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996). [CrossRef]
  4. S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997). [CrossRef]
  5. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. (Oceans) 104, 5403–5421 (1999). [CrossRef]
  6. R. M. Chomko, H. R. Gordon, S. Maritorena, D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208–220 (2003). [CrossRef]
  7. A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995). [CrossRef]
  8. N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789–22803 (1993). [CrossRef]
  9. F. E. Hoge, P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996). [CrossRef]
  10. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999). [CrossRef]
  11. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999). [CrossRef]
  12. F. E. Hoge, P. E. Lyon, “Spectral parameters of inherent optical property models: feasibility of satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999). [CrossRef]
  13. F. E. Hoge, P. E. Lyon, “Satellite observation of chromophoric dissolved organic matter (CDOM) variability in the wake of hurricanes and typhoons,” Geophys. Res. Lett. 29, doi:10.1029/2002GL015114 (2002). [CrossRef]
  14. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106C, 31129–31138 (2001). [CrossRef]
  15. Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, M. J. Perry, “Estimating primary production at depth from remote sensing,” Appl. Opt. 35, 463–474 (1996). [CrossRef] [PubMed]
  16. M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited