OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 32 — Nov. 10, 2004
  • pp: 5933–5938

In-line optical fiber sensors based on cladded multimode tapered fibers

Joel Villatoro, David Monzón-Hernández, and Donato Luna-Moreno  »View Author Affiliations

Applied Optics, Vol. 43, Issue 32, pp. 5933-5938 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of uniform-waist cladded multimode tapered optical fibers is demonstrated for evanescent wave spectroscopy and sensors. The tapering is a simple, low-loss process and consists of stretching the fiber while it is being heated with an oscillating flame torch. As examples, a refractive-index sensor and a hydrogen sensor are demonstrated by use of a conventional graded-index multimode optical fiber. Also, absorbance spectra are measured while the tapers are immersed in an absorbing liquid. It is found experimentally that the uniform waist is the part of the taper that contributes most to the sensor sensitivity. The taper waist diameter may also be used to adjust the sensor dynamic range.

© 2004 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.5710) Instrumentation, measurement, and metrology : Refraction
(120.6780) Instrumentation, measurement, and metrology : Temperature
(300.1030) Spectroscopy : Absorption
(300.6490) Spectroscopy : Spectroscopy, surface

Original Manuscript: March 4, 2004
Revised Manuscript: August 17, 2004
Published: November 10, 2004

Joel Villatoro, David Monzón-Hernández, and Donato Luna-Moreno, "In-line optical fiber sensors based on cladded multimode tapered fibers," Appl. Opt. 43, 5933-5938 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. T. V. Grattan, B. T. Meggitt, eds., Optical Fiber Technology Vol. 4: Chemical and Environmental Sensing (Klumer Academic, Dordrecht, The Netherlands, 1999).
  2. J. M. López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, Chichester, UK, 2002).
  3. F. S. Ligler, C. A. R. Taitt, eds., Optical Biosensors: Present and Future (Elsevier Science, Amsterdam, The Netherlands, 2002).
  4. G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994). [CrossRef]
  5. H. H. Gao, Z. Chen, J. Kumar, S. K. Tripathy, D. L. Kaplan, “Tapered fiber tips for fiber optics biosensors,” Opt. Eng. 34, 3465–3469 (1995). [CrossRef]
  6. N. Nath, S. Anand, “Evanescent wave fiber optic fluorosensor: effect of tapering configuration on the signal acquisition,” Opt. Eng. 37, 220–228 (1998). [CrossRef]
  7. A. Grazia Mignani, R. Falciai, L. Ciaccheri, “Evanescent-wave absorption spectroscopy by means of bitapered multimode optical fibers,” Appl. Spectrosc. 52, 546–550 (1998). [CrossRef]
  8. S. Gou, S. Albin, “Transmission property and evanescent wave absorption of cladded multimode fiber tapers,” Opt. Express 11, 215–223 (2003), http://www.opticsexpress.org . [CrossRef]
  9. F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, “Low loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988). [CrossRef]
  10. T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992). [CrossRef]
  11. J. Villatoro, D. Monzon-Hernandez, E. Mejia, “Fabrication and modeling of uniform-waist singlemode tapered optical fiber sensors,” Appl. Opt. 42, 2278–2283 (2003). [CrossRef] [PubMed]
  12. T. Takeo, H. Hattori, “Silica glass fiber photorefractometer,” Appl. Opt. 31, 44–50 (1992). [CrossRef] [PubMed]
  13. W. Johnstone, G. Thusrby, D. Moodie, K. McCallion, “Fiber-optic refractometer that utilizes multimode overlay devices,” Opt. Lett. 17, 1538–1540 (1992). [CrossRef]
  14. A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998). [CrossRef]
  15. J. Zubia, G. Garitaonaindia, J. Arrue, “Passive device based on plastic optical fibers to determine the indices of refraction of liquids,” Appl. Opt. 39, 941–946 (2000). [CrossRef]
  16. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001). [CrossRef]
  17. G. Laggont, P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001). [CrossRef]
  18. M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B 22, 155–163 (1994). [CrossRef]
  19. M. Tabib, B. Sutapun, R. Petrick, A. Kazemi, “Highly sensitive hydrogen sensors based on palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999). [CrossRef]
  20. J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on Pd-coated single-mode tapered fibers,” IEEE Sens. J. 3, 533–537 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited