OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 32 — Nov. 10, 2004
  • pp: 5939–5946

Technique of microball lens formation for efficient optical coupling

Cheng-Tang Pan, Chi-Hui Chien, and Chi-Chang Hsieh  »View Author Affiliations


Applied Optics, Vol. 43, Issue 32, pp. 5939-5946 (2004)
http://dx.doi.org/10.1364/AO.43.005939


View Full Text Article

Enhanced HTML    Acrobat PDF (1623 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A batch-fabricated microball lens array not only provides accurate coupling distances but also replaces traditional components such as aspheric lenses and expensive graded-index lenses without sacrificing performance and reduces assembly cost. The results of extensive experiments show a critical aspect ratio of ∼0.3. That is, when the aspect ratio is larger than 0.3, the final shape of a reflowed lens changes to that of a microball rather than of a mushroom. Using a laser with a 633-nm wavelength yields an optimum coupling distance of ∼8 μm with an insertion loss below -1.3 dB (coupling efficiency, ∼73%).

© 2004 Optical Society of America

OCIS Codes
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers
(220.3630) Optical design and fabrication : Lenses

History
Original Manuscript: February 4, 2004
Revised Manuscript: June 18, 2004
Published: November 10, 2004

Citation
Cheng-Tang Pan, Chi-Hui Chien, and Chi-Chang Hsieh, "Technique of microball lens formation for efficient optical coupling," Appl. Opt. 43, 5939-5946 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-32-5939


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinheim, Germany, 1999), pp. 85–103.
  2. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for the monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988). [CrossRef] [PubMed]
  3. M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253–265 (1990). [CrossRef]
  4. M. Stern, T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33, 3547–3550 (1994). [CrossRef]
  5. M. E. Matamedi, M. P. Griswold, R. E. Knowlden, “Silicon microlenses for enhanced optical coupling to silicon focal planes,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 22–32 (1991). [CrossRef]
  6. M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 22, 3556–3566 (1994). [CrossRef]
  7. K. Zimmer, D. Hirsch, F. Bigl, “Excimer laser machining for the fabrication of analogous microstructures,” Appl. Surf. Sci. 96–98, 425–429 (1996). [CrossRef]
  8. W. R. Cox, T. Chen, D. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News 12(6), 32–35 (2001). [CrossRef]
  9. J. Gottert, J. Mohr, “Characterization of micro-optical components fabricated by deep-etch x-ray lithography,” in Micro-Optics II, A. M. Verga Scheggi, ed., Proc. SPIE1506, 170–178 (1991). [CrossRef]
  10. S.-K. Lee, K.-C. Lee, S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334–340 (2002). [CrossRef]
  11. H. Yang, M.-C. Chou, A. Yang, C.-K. Mu, R. F. Shyu, “Realization of fabricating microlens array in mass production,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 178–185 (1999). [CrossRef]
  12. H. Yang, C. T. Pan, M.-C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” J. Micromech. Microeng. 11, 94–99 (2001). [CrossRef]
  13. L. S. Huang, S. S. Lee, E. Motamedi, M. C. Wu, C. J. Kim, “MEMS packaging for micro mirror switches,” in 48th IEEE Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 592–597.
  14. M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free space integrated optics realized by surface micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997). [CrossRef]
  15. H. Toshiyoshi, H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” IEEE J. Microelectromech. Syst. 5, 231–237 (1996). [CrossRef]
  16. D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990). [CrossRef]
  17. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988). [CrossRef] [PubMed]
  18. M. C. Hutley, R. F. Stevens, D. Daly, “The manufacture of microlens arrays and fan-out gratings in photoresist,” in IEE Colloquium on Optical Connection and Switching Networks for Communication and Computing (Institute of Electrical Engineers, London, 1990), pp. 11-1–11-3.
  19. V. Russo, G. C. Righini, S. Sottini, S. Trigari, “Lens-ended fibers for medical applications: a new fabrication technique,” Appl. Opt. 23, 3277–3283 (1984). [CrossRef] [PubMed]
  20. G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient coupling of laser diodes to tapered monomode fibers with high-index end,” Electron. Lett. 17, 205–207 (1983). [CrossRef]
  21. W. R. Cox, C. Guan, D. J. Hayes, D. B. Wallace, “Microjet printing of micro-optical interconnects,” Int. J. Microcircuits Electron. Packag. 23, 346–351 (2000).
  22. P. Heremens, J. Genoe, M. Kuijk, R. Vounckx, G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photon. Technol. Lett. 9, 1367–1369 (1997). [CrossRef]
  23. S. C. Shen, C. T. Pan, M. C. Chou, H. P. Chou, “Electromagnetic optical switch for optical network communication,” J. Magn. Magn. Mater. 239, 610–613 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited