OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 32 — Nov. 10, 2004
  • pp: 5987–5995

Airborne digital holographic system for cloud particle measurements

Jacob P. Fugal, Raymond A. Shaw, Ewe Wei Saw, and Aleksandr V. Sergeyev  »View Author Affiliations


Applied Optics, Vol. 43, Issue 32, pp. 5987-5995 (2004)
http://dx.doi.org/10.1364/AO.43.005987


View Full Text Article

Enhanced HTML    Acrobat PDF (1432 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An in-line holographic system for in situ detection of atmospheric cloud particles [Holographic Detector for Clouds (HOLODEC)] has been developed and flown on the National Center for Atmospheric Research C-130 research aircraft. Clear holograms are obtained in daylight conditions at typical aircraft speeds of 100 m s-1. The instrument is fully digital and is interfaced to a control and data-acquisition system in the aircraft via optical fiber. It is operable at temperatures of less than -30 °C and at typical cloud humidities. Preliminary data from the experiment show its utility for studies of the three-dimensional spatial distribution of cloud particles and ice crystal shapes.

© 2004 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.7060) Atmospheric and oceanic optics : Turbulence
(090.0090) Holography : Holography
(120.4640) Instrumentation, measurement, and metrology : Optical instruments

History
Original Manuscript: April 14, 2004
Revised Manuscript: August 13, 2004
Published: November 10, 2004

Citation
Jacob P. Fugal, Raymond A. Shaw, Ewe Wei Saw, and Aleksandr V. Sergeyev, "Airborne digital holographic system for cloud particle measurements," Appl. Opt. 43, 5987-5995 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-32-5987


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Shaw, “Particle-turbulence interactions in atmospheric clouds,” Ann. Rev. Fluid Mech. 35, 183–227 (2003). [CrossRef]
  2. A. B. Kostinski, R. A. Shaw, “Scale-dependent droplet clustering in turbulent clouds,” J. Fluid Mech. 434, 389–398 (2001). [CrossRef]
  3. A. Kozikowska, K. Haman, J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984). [CrossRef]
  4. E. Uhlig, S. Borrmann, R. Jaenicke, “Holographic in situ measurements of the spatial droplet distribution in stratiform clouds,” Tellus Ser. B 50, 377–387 (1998). [CrossRef]
  5. L. Cao, G. Pan, H. Meng, “Three-dimensional measurement of aerosol particle clustering in homogeneous isotropic turbulence,” in ASME Summer Heat Transfer Conference, Las Vegas, Nev. (American Society of Mechanical Engineers, New York, 2003), doi: HT2003–47435.
  6. G. L. Holtzer, L. R. Collins, “Relationship between the intrinsic radial distribution function for an isotropic field of particles and lower-dimensional measurements,” J. Fluid Mech. 459, 93–102 (2002). [CrossRef]
  7. H. Meng, G. Pan, Y. Pu, S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004). [CrossRef]
  8. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002). [CrossRef]
  9. B. J. Thompson, “Holographic particle sizing techniques,” J. Phys. E 7, 781–788 (1974). [CrossRef]
  10. S. Borrmann, R. Jaenicke, “Application of microholography for ground-based in situ measurements in stratus cloud layers: a case study,” J. Atmos. Ocean. Technol. 10, 277–293 (1993). [CrossRef]
  11. R. P. Lawson, R. H. Cormack, “Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research,” Atmos. Res. 35, 315–348 (1995). [CrossRef]
  12. H. Meng, W. L. Anderson, F. Hussain, D. D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993). [CrossRef]
  13. R. B. Owen, A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187–2197 (2000). [CrossRef]
  14. G. Pan, H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003). [CrossRef] [PubMed]
  15. W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367–5375 (2002). [CrossRef] [PubMed]
  16. H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic, Boston, Mass., 1997), pp. 15–24.
  17. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983), Chap. 4, pp. 107–111.
  18. F. Slimani, G. Grehan, G. Gouesbet, D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23, 4140–4148 (1984). [CrossRef] [PubMed]
  19. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999), Chap. 8, pp. 412–516.
  20. G. A. Tyler, B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” Opt. Acta 23, 685–700 (1976). [CrossRef]
  21. J. I. MacPherson, D. Baumgardner, “Airflow about King Air wingtip-mounted cloud particle measurement probes,” J. Atmos. Ocean. Technol. 5, 259–273 (1988). [CrossRef]
  22. P. K. Kundu, I. M. Cohen, Fluid Mechanics (Academic, San Diego, Calif., 2002), Chaps. 6, 10, pp. 148–192, 312–377.
  23. D. Nagel, GKSS-Research Centre, Institute for Coastal Research, Max-Planck-Strasse 1, D-21502 Geesthacht, Germany (personal communication, 2003).
  24. IDEAS 3 was held at the National Center for Atmospheric Research, Research Aviation Facility, sponsored by the National Science Foundation. Details of the IDEAS 3 project are available at http://raf.atd.ucar.edu/Projects/IDEAS-3/ .
  25. J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, Boston, Mass., 1996), Eq. (3-74).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited