OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 32 — Nov. 10, 2004
  • pp: 5996–6000

Chirped switchable reflection grating in holographic polymer-dispersed liquid crystal for spectral flattening in free-space optical communication systems

Jean-Luc Kaiser, Raymond Chevallier, Jean-Louis de Bougrenet de la Tocnaye, Hayqing Xianyu, and Gregory Philip Crawford  »View Author Affiliations


Applied Optics, Vol. 43, Issue 32, pp. 5996-6000 (2004)
http://dx.doi.org/10.1364/AO.43.005996


View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the design and fabrication of a chirped switchable reflective grating (CSRG) recorded in a holographic polymer-dispersed liquid-crystal material. This CSRG is a spatial wavelength-selective flattener in a free-space dynamic gain equalizer for use in wavelength-division multiplexing (WDM) networks. Prelimenary experimental results show that this device permits the management of the spectral power of a WDM stream with an attenuation range of 6 dB. The polarization-dependent loss introduced by the CSRG is shown to be less than 0.1 dB.

© 2004 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(090.2890) Holography : Holographic optical elements
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings

History
Original Manuscript: January 6, 2004
Revised Manuscript: August 16, 2004
Published: November 10, 2004

Citation
Jean-Luc Kaiser, Raymond Chevallier, Jean-Louis de Bougrenet de la Tocnaye, Hayqing Xianyu, and Gregory Philip Crawford, "Chirped switchable reflection grating in holographic polymer-dispersed liquid crystal for spectral flattening in free-space optical communication systems," Appl. Opt. 43, 5996-6000 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-32-5996


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Berthold, “WDM in the metropolitan: past present and future,” presented at the 28th European Conference on Optical Communication (ECOC), Copenhagen, Denmark, 8–12 September 2002.
  2. J. Ford, J. A. Walker, “Dynamic spectral power equalisation using micro-opto-mechanics,” IEEE Photon. Technol. Lett. 10, 1440–1442 (1998). [CrossRef]
  3. A. R. Ranalli, B. A. Scott, J. P. Kondis, “Liquid crystal-based wavelength selectable cross-connect,” in Proceedings of the 25th European Conference on Optical Communication (ECOC 1999) (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1999), Vol. 1, pp. 68–69.
  4. T. Loukina, R. Chevallier, J. L. de Bougrenet de la Tocnaye, M. Barge, “Dynamic spectral equalizer using free-space dispersive optics combined with a polymer-dispersed liquid-crystal spatial light attenuator,” J. Lightwave Technol. 21, 2067–2073 (2003). [CrossRef]
  5. L. Domash, G. P. Crawford, A. Ashmead, R. Smith, M. Popovich, J. Storey, “Holographic PDLC for photonic applications,” in Liquid Crystals IV, I.-C. Khoo, ed., Proc. SPIE4107, 254–256 (1997).
  6. L. H. Domash, Y. M. Chen, P. Haugsjaa, M. Oren, “Electronically switchable waveguide Bragg gratings for WDM routing,” In 1997 Digest of the IEEE/LEOS Summer Topical Meetings—WDM Components Technology (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1997), pp. 34–35.
  7. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, “Electrically switchable volume grating in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994). [CrossRef]
  8. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  9. M. de Sarkar, J. Qi, G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002) [CrossRef]
  10. E. B. Li and, A. K. Tieu, “Spherical Gaussian beam model for prediction of three-dimensional fringe patterns in a laser Doppler anemometer measuring volume,” Opt. Lasers Eng. 30, 287–297 (1998). [CrossRef]
  11. J. Qi, M. de Sarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002). [CrossRef]
  12. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002). [CrossRef]
  13. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B, 19, 3004–3012 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited