OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 32 — Nov. 10, 2004
  • pp: 6030–6039

Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics

Mikhail A. Kagan and Efim A. Khazanov  »View Author Affiliations


Applied Optics, Vol. 43, Issue 32, pp. 6030-6039 (2004)
http://dx.doi.org/10.1364/AO.43.006030


View Full Text Article

Enhanced HTML    Acrobat PDF (449 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed a model that describes thermally induced birefringence in polycrystalline ceramics that are exposed to a magnetic field. Conditions under which traditional compensation techniques (for glass and single crystals) can be effective for ceramics have been found. It is shown that a ceramic is almost equivalent to a [111]-oriented crystal if the ratio of the rod length to the grain size is ∼300 or more. In particular, residual depolarization (after the compensation techniques are applied) is inversely proportional to this ratio, which is an important consequence of the random nature of thermally induced birefringence in ceramics.

© 2004 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(190.4870) Nonlinear optics : Photothermal effects
(230.3240) Optical devices : Isolators

History
Original Manuscript: January 13, 2004
Revised Manuscript: August 20, 2004
Published: November 10, 2004

Citation
Mikhail A. Kagan and Efim A. Khazanov, "Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics," Appl. Opt. 43, 6030-6039 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-32-6030


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Taira, A. Ikesue, K. Yoshida, “Diode-pumped Nd:YAG ceramics lasers,” in Advanced Solid-State Lasers, W. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 430–432.
  2. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000). [CrossRef]
  3. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000). [CrossRef]
  4. J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001). [CrossRef]
  5. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001). [CrossRef]
  6. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27, 234–236 (2002). [CrossRef]
  7. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27, 716–718 (2002). [CrossRef]
  8. M. A. Kagan, E. A. Khazanov, “Compensation of thermally induced birefringence in active medium made of polycrystalline ceramics,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 151–162 (2003). [CrossRef]
  9. M. A. Kagan, E. A. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003). [CrossRef]
  10. A. Ikesue, I. Furusato, K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78, 225–228 (1995). [CrossRef]
  11. A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995). [CrossRef]
  12. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5 O12 ceramics,” J. Am. Ceram. Soc. 79, 1921–1941 (1995).
  13. K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002). [CrossRef]
  14. A. Ikesue, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 Japan (personal communication, 2002).
  15. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999). [CrossRef]
  16. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999). [CrossRef]
  17. L. Ainola, H. Aben, “Transformation equations in polarization optics of inhomogeneous birefringent media,” J. Opt. Soc. Am. A 18, 2164–2170 (2001). [CrossRef]
  18. M. J. Tabor, F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).
  19. A. P. Voytovich, V. N. Severikov, Lasers with Anisotropic Resonators (Nauka, Minsk, 1988).
  20. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000). [CrossRef]
  21. N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002). [CrossRef]
  22. E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electronics 31, 351–356 (2001). [CrossRef]
  23. E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002). [CrossRef] [PubMed]
  24. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002). [CrossRef] [PubMed]
  25. L. D. Landau, E. M. Lifshits, Theoretical Physics: Mechanics (Nauka, Moscow, 1973).
  26. A. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, USSR, 1986).
  27. L. N. Soms, A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979). [CrossRef]
  28. E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).
  29. S. M. Ritov, Y. A. Kravtsov, B. T. Tatarskii, Introduction to Statistical Radiophysics (Nauka, Moscow, 1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited