OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 33 — Nov. 20, 2004
  • pp: 6074–6079

First- and second-order polarization mode dispersion generated by a two-stage emulator

Russell A. Chipman and Ravinderkumar Kinnera  »View Author Affiliations


Applied Optics, Vol. 43, Issue 33, pp. 6074-6079 (2004)
http://dx.doi.org/10.1364/AO.43.006074


View Full Text Article

Enhanced HTML    Acrobat PDF (162 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-stage polarization mode dispersion (PMD) emulator design consisting of two variable delay lines separated by a rotatable half-wave linear retarder is analyzed and shown to generate an adjustable amount of first- and second-order PMD without any higher orders. This two-stage PMD emulator configuration provides a simple easy-to-breadboard solution for second-order PMD emulators. When compared with PMD emulators based on birefringent crystals, this two-stage emulator is simpler to calibrate.

© 2004 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2300) Fiber optics and optical communications : Fiber measurements
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.5410) Instrumentation, measurement, and metrology : Polarimetry

History
Original Manuscript: April 22, 2004
Published: November 20, 2004

Citation
Russell A. Chipman and Ravinderkumar Kinnera, "First- and second-order polarization mode dispersion generated by a two-stage emulator," Appl. Opt. 43, 6074-6079 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-33-6074


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. N. Damask, “A programmable polarization-mode dispersion emulator for systematic testing of 10 Gb/s PMD compensators,” in Optical Fiber Communication Conference, Postconference Digest, Vol. 37 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), pp. 28–30.
  2. I. T. Lima, R. Khosravani, P. Ebrahimi, E. Ibragimov, A. E. Willner, C. R. Menyuk, “Polarization mode dispersion emulator,” in Postconference Digest, Vol. 37 of OSA Trends in Optics and Photonics (Optical Society of America, 2000), pp. 31–33.
  3. J. Damask, G. Simer, K. Rochford, P. Myers, “Demonstration of a programmable PMD source,” IEEE Photon. Technol. Lett. 15, 296–298 (2002). [CrossRef]
  4. R. A. Chipman, R. Kinnera, “A high-order polarization mode dispersion emulator,” Opt. Eng. 341, 932–937 (2002). [CrossRef]
  5. H. Lee, Y. C. Chung, “Statistical PMD emulator using variable DGD elements,” in Optical Fiber Communication Conference, Postconference Digest, Vol. 70 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), pp. 375–376.
  6. J. H. Lee, M. S. Kim, Y. C. Chung, “Statistical PMD emulator using variable DGD elements,” IEEE Photon. Technol. Lett. 15, 54–56 (2003). [CrossRef]
  7. M. Wegmuller, S. Demma, C. Vinegoni, N. Gisin, “Emulator of first- and second-order polarization-mode dispersion,” IEEE Photon. Technol. Lett. 14, 630–632 (2002). [CrossRef]
  8. E. Ibragimov, G. Shtengel, S. Suh, “Statistical correlation between first- and second-order PMD,” J. Lightwave Technol. 20, 586–590 (2002). [CrossRef]
  9. J. J. Drewes, R. A. Chipman, M. H. Smith, “Characterizing polarization controllers with Mueller matrix polarimetry,” in Active and Passive Optical Components for WDM Communication, A. K. Dutta, A. A. S. Awwal, N. K. Dutta, K. Okamoto, eds., Proc. SPIE4532, 462–466 (2001). [CrossRef]
  10. C. D. Poole, R. E. Wagner, “Phenomenological approach to the polarization mode dispersion,” Electron. Lett. 22, 1029–1039 (1986). [CrossRef]
  11. J. P. Gordon, H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 99, 4541–4550 (1999).
  12. B. Lyot, “Recherches sur la polarisation de la lumière des planètes et de quelques substances terrestres,” Ann. Obser. Paris 8, 100–104 (1929).
  13. B. H. Billings, “A monochromatic depolarizer,” J. Opt. Soc. Am. 41, 966–975 (1951). [CrossRef]
  14. S. Lu, A. P. Loeber, “Depolarization of white light by a birefringent crystal,” J. Opt. Soc. Am. 65, 248–251 (1975). [CrossRef]
  15. A. P. Loeber, “Depolarization of white light by a birefringent crystal: the Lyot depolarizer,” J. Opt. Soc. Am. 72, 650–656 (1982). [CrossRef]
  16. W. K. Burns, “Degree of polarization in the Lyot depolarizer,” J. Lightwave Technol. LT-1, 475–479 (1983). [CrossRef]
  17. A. Djupsjobacka, “On differential group-delay statistics for polarization mode dispersion emulators,” J. Lightwave Technol. 19, 285–290 (2001). [CrossRef]
  18. A. Eyal, W. K. Marshall, M. Tur, A. Yariv, “Representation of second-order polarization mode dispersion,” Electron. Lett. 35, 1658–1659 (1999). [CrossRef]
  19. B. L. Heffner, “Automated measurements of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited