OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 33 — Nov. 20, 2004
  • pp: 6080–6089

Computation of the disk of least confusion for conic mirrors

Jorge Castro-Ramos, Oscar de Ita Prieto, and Gilberto Silva-Ortigoza  »View Author Affiliations

Applied Optics, Vol. 43, Issue 33, pp. 6080-6089 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (464 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use geometrical optics to compute, in an exact way and by using the third-order approximation, the disk of least confusion (DLC) or the best image produced by a conic reflector when the point source is located at any position on the optical axis. In the approximate case we obtain analytical formulas to compute the DLC. Furthermore, we apply our equations to particular examples to compare the exact and approximate results.

© 2004 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.1010) Geometric optics : Aberrations (global)
(080.1510) Geometric optics : Propagation methods

Original Manuscript: March 19, 2004
Revised Manuscript: July 13, 2004
Published: November 20, 2004

Jorge Castro-Ramos, Oscar de Ita Prieto, and Gilberto Silva-Ortigoza, "Computation of the disk of least confusion for conic mirrors," Appl. Opt. 43, 6080-6089 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Kingslake, Lens Design Fundamentals (Academic, New York, 1978).
  2. A. E. Conrady, Applied Optics and Optical Design (Dover, New York, 1985), Pt. 1.
  3. D. L. Shealy, D. G. Burkhard, “Caustic surfaces and irradiance for reflection and refraction from an ellipsoid, elliptic paraboloid, and elliptic core,” Appl. Opt. 12, 2955–2959 (1973). [CrossRef] [PubMed]
  4. D. L. Shealy, D. G. Burkhard, “Flux density ray propagation in discrete index media expressed in terms of the intrinsic geometry of the deflecting surface,” Opt. Acta 20, 287–301 (1973). [CrossRef]
  5. O. N. Stavroudis, R. C. Fronczek, “Caustic surfaces and the structure of the geometrical image,” J. Opt. Soc. Am. 66, 795–800 (1976). [CrossRef]
  6. I. H. Schroader, “The caustic test,” in Amateur Telescope Making, A. G. Ingalls, ed. (Scientific American, New York, 1974), Vol. 3, p. 429.
  7. P. S. Theocaris, “Reflected shadow method for the study of constrained zones in cracked plates,” Appl. Opt. 10, 2240–2247 (1971). [CrossRef] [PubMed]
  8. P. S. Theocaris, “Multicusp caustics formed from reflections of warped surfaces,” Appl. Opt. 27, 780–789 (1988). [CrossRef] [PubMed]
  9. D. L. Shealy, D. G. Burkhard, “Analytical illuminance calculation in a multi-interface optical system,” Opt. Acta 22, 485–501 (1975). [CrossRef]
  10. D. L. Shealy, “Analytical illuminance and caustic surface calculations in geometric optics,” Appl. Opt. 15, 2588–2596 (1976). [CrossRef] [PubMed]
  11. D. G. Burkhard, D. L. Shealy, “Simplified formula for the illuminance in an optical system,” Appl. Opt. 20, 897–909 (1981). [CrossRef] [PubMed]
  12. P. S. Theocaris, E. E. Gdoutos, “Surface topography by caustics,” Appl. Opt. 15, 1629–1638 (1976). [CrossRef] [PubMed]
  13. P. S. Theocaris, T. P. Philippides, “Possibilities of reflected caustics due to an improved optical arrangement: some further aspects,” Appl. Opt. 23, 3667–3675 (1984). [CrossRef] [PubMed]
  14. P. S. Theocaris, “Properties of caustics from conic reflectors. 1. Meridional rays,” Appl. Opt. 16, 1705–1716 (1977). [CrossRef] [PubMed]
  15. P. S. Theocaris, J. G. Michopoulos, “Generalization of the theory of far-field caustics by the catastrophe theory,” Appl. Opt. 21, 1080–1091 (1982). [CrossRef] [PubMed]
  16. M. V. Berry, C. Upstill, Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1980), Vol. XVIII, p. 259.
  17. A. Cordero-Dávila, J. Castro-Ramos, “Exact calculation of the circle of least confusion of a rotationally symmetric mirror,” Appl. Opt. 37, 6774–6778 (1998). [CrossRef]
  18. G. Silva-Ortigoza, J. Castro-Ramos, A. Cordero-Dávila, “Exact calculation of the circle of least confusion of a rotationally symmetric mirror. II,” Appl. Opt. 40, 1021–1028 (2001). [CrossRef]
  19. V. I. Arnold, Catastrophe Theory (Springer-Verlag, Berlin, 1986). [CrossRef]
  20. V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps (Birkhäuser, Boston, Mass., 1995), Vol. 1.
  21. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, Berlin, 1980).
  22. D. Malacara, Optical Shop Testing, 2nd ed. (Wiley-Interscience, 1992), Appl. 1, pp. 743–745.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited