OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 33 — Nov. 20, 2004
  • pp: 6134–6138

Quantum-implementable selective reconstruction of high-resolution images

Mitja Peruš, Horst Bischof, H. John Caulfield, and Chu Kiong Loo  »View Author Affiliations

Applied Optics, Vol. 43, Issue 33, pp. 6134-6138 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (581 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper, written for interdisciplinary audience, presents computational image reconstruction implementable by quantum optics. The input-triggered selection of a high-resolution image among many stored ones, and its reconstruction if the input is occluded or noisy, has been successfully simulated. The original algorithm, based on the Hopfield associative neural net, was transformed in order to enable its quantum-wave implementation based on holography. The main limitations of the classical Hopfield net are much reduced with the simulated new quantum-optical implementation.

© 2004 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(100.3010) Image processing : Image reconstruction techniques
(200.4490) Optics in computing : Optical buffers
(200.4700) Optics in computing : Optical neural systems
(270.0270) Quantum optics : Quantum optics

Original Manuscript: May 4, 2004
Revised Manuscript: August 13, 2004
Published: November 20, 2004

Mitja Peruš, Horst Bischof, H. John Caulfield, and Chu Kiong Loo, "Quantum-implementable selective reconstruction of high-resolution images," Appl. Opt. 43, 6134-6138 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bouwmeester, A. Ekert, A. Zeilinger, eds., The Physics of Quantum Information (Springer, Berlin, 2000). [CrossRef]
  2. F. T. S. Yu, S. Jutamulia, eds., Optical Pattern Recognition (Cambridge U. Press, Cambridge, UK, 1998).
  3. M. Andrecut, M. K. Ali, “Quantum associative memory,” Int. J. Mod. Phys. B 17, 2447–2472 (2003). [CrossRef]
  4. C. Trugenberger, “Probabilistic quantum memories,” Phys. Rev. Lett. 87, 067901 (2001). [CrossRef] [PubMed]
  5. C. Trugenberger, “Phase transitions in quantum pattern recognition,” Phys. Rev. Lett. 89, 277903 (2001). [CrossRef]
  6. D. Ventura, T. Martinez, “Quantum associative memory,” Info. Sci. 124, 273–296 (2000). [CrossRef]
  7. J. Howell, J. Yeazell, D. Ventura, “Optically simulating a quantum associative memory,” Phys. Rev. A 62, 042303 (2000). [CrossRef]
  8. R. Schützhold, “Pattern recognition on a quantum computer,” http://xxx.lanl.gov/pdf/quant-ph/0208063 (3Dec2002).
  9. M. Peruš, S. K. Dey, “Quantum systems can implement content-addressable associative memory,” Appl. Math. Lett. 13, 31–36 (2000). [CrossRef]
  10. J. Sutherland, “Holographic model of memory, learning and expression,” Int. J. Neural Sys. 1, 256–267 (1990). [CrossRef]
  11. R. Spencer, “Bipolar spectral associative memories,” IEEE Transac. Neural Netw. 12, 463–474 (2001). [CrossRef]
  12. A. V. Pavlov, “On algebraic foundations of Fourier holography,” Opt. Spectrosc. 90, 452–457 (2001). [CrossRef]
  13. C. Leichtle, W. Schleich, I. Averbukh, M. Shapiro, “Quantum state holography,” Phys. Rev. Lett. 80, 1418–1421 (1998). [CrossRef]
  14. T. C. Weinacht, J. Ahn, P. H. Baucksbaum, “Controlling the shape of a quantum wavefunction,” Nature 397, 233–235 (1999). [CrossRef]
  15. M. Peruš, H. Bischof, “Quantum-wave pattern recognition,” in Proceedings of the 7th Joint Conference on Information Sciences, K. Chen, ed. (JCIS/Association for Intelligent Machinery, Durham, N.C., 2003), pp. 1536–1539.
  16. H. Bjelkhagen, H. J. Caulfield, eds., Selected Papers on the Fundamental Techniques in Holography (SPIE Press, Bellingham, Wash., 2001).
  17. W. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001). [CrossRef]
  18. A. Granik, H. J. Caulfield, “Quantum holography,” in Holography, Vol. IS 8 of SPIE Institute for Advanced Optical Technologies Series (SPIE Press, Bellingham, Wash., 1990), pp. 33–38.
  19. M. Peruš, “Neural networks as a basis for quantum associative networks,” Neural Netw. World 10, 1001–1013 (2000).
  20. D. Smithey, M. Beck, M. Raymer, A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography,” Phys. Rev. Lett. 70, 1244–1247 (1993). [CrossRef] [PubMed]
  21. G. D’Ariano, P. Lo Presti, “Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation,” Phys. Rev. Lett. 86, 4195–4198 (2001). [CrossRef] [PubMed]
  22. D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Reports 376, 385–481 (2003). [CrossRef]
  23. B. Travaglione, G. Milburn, “Generation of eigenstates using the phase estimation algorithm,” Phys. Rev. A 63, 032301 (2001). [CrossRef]
  24. G. Rigatos, S. Tzafestas, “Fuzzy learning compatible with quantum mechanics postulates,” in Proceedings of the 7th Joint Conference on Information Sciences, K. Chen, ed. (JCIS/Association for Intelligent Machinery, Durham, N.C., 2003), pp. 1532–1535, sec. 2.
  25. C. Bennett, R. Landauer, “The fundamental physical limits of computation,” Sci. Am. 253, 48–56 (1985). [CrossRef]
  26. H. J. Caulfield, J. Shamir, “Wave-particle duality processors: characteristics, requirements, and applications,” J. Opt. Soc. Am. A 7, 1314–1323 (1990). [CrossRef]
  27. H. J. Caulfield, J. Shamir, “Wave-particle duality considerations in optical computing,” Appl. Opt. 28, 2184–2186 (1989). [CrossRef] [PubMed]
  28. H. J. Caulfield, J. Shamir, J. Ludman, P. Greguss, “Reversibility and energetics in optical computing,” Opt. Lett. 15, 812–814 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited