OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 33 — Nov. 20, 2004
  • pp: 6157–6165

Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating

Danaë Delbeke, Roel Baets, and Peter Muys  »View Author Affiliations


Applied Optics, Vol. 43, Issue 33, pp. 6157-6165 (2004)
http://dx.doi.org/10.1364/AO.43.006157


View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A polarization beam splitter (PBS) based on a giant-reflection to zero-order (GIRO) grating is presented. The GIRO grating is a simple binary diffraction grating with parameters chosen such that the excited optical modes in the grating interfere constructively and destructively at the respective interfaces. This interference results in high-zero-order reflection (>99%) with a high polarization-selective extinction ratio (±30 dB). The grating shows a low aspect ratio. The GIRO PBS is theoretically and experimentally shown to be an adequate PBS for use as an optical isolator in combination with a quarter-wave plate in a CO2-laser system.

© 2004 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1970) Diffraction and gratings : Diffractive optics
(140.3470) Lasers and laser optics : Lasers, carbon dioxide
(230.1360) Optical devices : Beam splitters
(230.3240) Optical devices : Isolators

History
Original Manuscript: April 21, 2004
Published: November 20, 2004

Citation
Danaë Delbeke, Roel Baets, and Peter Muys, "Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating," Appl. Opt. 43, 6157-6165 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-33-6157


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), Chap. 24.
  2. L. Li and, J. A. Dobrowolsky, “High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle,” Appl. Opt. 39, 2754–2771 (2000). [CrossRef]
  3. J.-L. Roumiguieres, “The rectangular-groove grating used as an infrared polarizer,” Opt. Commun. 19, 76–78 (1976). [CrossRef]
  4. R. Liu, B.-Z. Dong, G.-Z. Yang, B.-Y. Gu, “Optimal design of polarizing beam splitters with a birefringent substrate,” J. Opt. Soc. Am. A 14, 49–53 (1997). [CrossRef]
  5. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, Y. Fainman, “Design, fabrication, and characterization of a form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1637 (1997). [CrossRef]
  6. P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois, “A transmission polarizing beam splitter,” J. Opt. A 1, 215–219 (1999). [CrossRef]
  7. H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993). [CrossRef]
  8. R. Baets, B. Demeulenaere, B. Dhoedt, S. Goeman, “Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity,” U.S. patent6,191,890 (20February2001).
  9. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998). [CrossRef]
  10. T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, E.-B. Kley, “Diffractive optical isolator made of high-efficiency dielectric gratings only,” Appl. Opt. 41, 3558–3566 (2002). [CrossRef] [PubMed]
  11. S. Chou, W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett. 67, 742–744 (1995). [CrossRef]
  12. E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992). [CrossRef]
  13. M. Kuittinen, J. Turunen, P. Vahimaa, “Subwavelength-structured elements,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie-Verlag, Berlin, 1997), pp. 303–323.
  14. K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281–283 (1978). [CrossRef]
  15. C. R. A. Lima, L. L. Soares, L. Cescato, A. L. Gobbi, “Reflecting polarizing beam splitter,” Opt. Lett. 22, 203–205 (1997). [CrossRef] [PubMed]
  16. L. L. Soares, L. Cescato, “Metallized photoresist grating as a polarizing beam splitter,” Appl. Opt. 40, 5906–5910 (2001). [CrossRef]
  17. P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994). [CrossRef]
  18. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999). [CrossRef]
  19. J. Tervo, J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings,” Opt. Lett. 25, 785–786 (2000). [CrossRef]
  20. J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, I. Moreno, “Polarization beam splitter using polarization diffraction grating,” Opt. Lett. 26, 587–589 (2001). [CrossRef]
  21. L. Pajewski, R. Borghi, G. Schettini, F. Frezza, M. Santarsiero, “Design of a binary grating with subwavelength features that acts as a polarizing beam splitter,” Appl. Opt. 40, 5898–5905 (2001). [CrossRef]
  22. E. Hasman, Z. Bomzon, A. Niv, G. Biener, V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002). [CrossRef]
  23. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993). [CrossRef]
  24. M. R. Brozel, G. E. Stillman, eds., Properties of Gallium Arsenide (INSPEC, London, 1996).
  25. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation of stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  26. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  27. L.-F. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  28. P. Lalanne, “Effective properties and band structures of lamellar subwavelength crystals: plane-wave method revisited,” Phys. Rev. B 58, 9801–9807 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited