OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 34 — Dec. 1, 2004
  • pp: 6255–6264

Testing fast aspheric convex surfaces with a linear array of sources

Manuel Campos-García, Rufino Díaz-Uribe, and Fermín Granados-Agustín  »View Author Affiliations


Applied Optics, Vol. 43, Issue 34, pp. 6255-6264 (2004)
http://dx.doi.org/10.1364/AO.43.006255


View Full Text Article

Enhanced HTML    Acrobat PDF (858 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a noncontact test procedure with which to obtain the shapes of fast convex surfaces. For this, an array of sources is positioned in a straight line and separated in such a way that the image by reflection on the surface consists of a set of equally spaced bright spots. By rotating the surface, we test different meridians such that, after 360°, the entire surface is measured. We present the source array design and the surface evaluation algorithm. We found that, to reduce numerical error in the evaluation of the shape of the surface, a numerical integration must be performed by a method that uses parabolic arcs instead of the traditional method that uses trapezoids. Through some numerical simulations we analyzed the accuracy of the method by introducing random displacements into the measured data. We found that to measure the quality of the surface with accuracy better than 5 μm, we have to measure the coordinates of the centroids on the image plane with an accuracy better than 0.5 pixel, and we to have measure the positions of the linear sources with an accuracy better than 0.5 mm. Experimental results for the testing of a carbon fiber convex sphere of 383.6-mm diameter (f/0.398) are shown.

© 2004 Optical Society of America

OCIS Codes
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(220.1250) Optical design and fabrication : Aspherics
(220.4840) Optical design and fabrication : Testing

History
Original Manuscript: March 10, 2004
Revised Manuscript: August 17, 2004
Published: December 1, 2004

Citation
Manuel Campos-García, Rufino Díaz-Uribe, and Fermín Granados-Agustín, "Testing fast aspheric convex surfaces with a linear array of sources," Appl. Opt. 43, 6255-6264 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-34-6255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Burge, “Measurement of large convex aspheres,” in Optical Telescopes of Today and Tomorrow, A. L. Ardeberg, ed., Proc. SPIE2871, 362–373 (1997). [CrossRef]
  2. F. Schillke, “Critical aspects on testing aspheres in interferometric setups,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 317–324 (1999). [CrossRef]
  3. Instituto Nacional de Astrofísica, Óptica y Electrónica, “The Large Millimeter Telescope Homepage,” http://www.lmtgtm.org/ .
  4. R. Díaz-Uribe, M. Campos-García, “Null screen testing of fast convex aspheric surfaces,” Appl. Opt. 39, 2670–2677 (2000). [CrossRef]
  5. Y. Barbosa, D. Malacara, “Object surface for applying a modified Hartmann test to measure corneal topography,” Appl. Opt. 40, 5778–5786 (2001). [CrossRef]
  6. I. E. Funes-Maderey, “Videoqueratometría de campo plano” (“Flat field videokeratometry”), B.A. dissertation (Universidad Nacional Autónoma de México, México, 1998).
  7. M. Campos-García, R. Díaz-Uribe, F. S. Granados-Agustín, D. Sacramento-Solano, “Null test of aspheric convex surface,” in Proceedings of International Symposium on Photonics in Measurement, VDI-Berichte 1694 (VDI Verlag GmbH, Düsseldorf, Germany, 2002), pp. 155–160.
  8. R. Díaz-Uribe, M. Campos-García, F. S. Granados-Agustín, “Testing the optics of the Large Millimeter Telescope (LMT),” in Infrared Spaceborne Remote Sensing X, M. Strojnik, B. F. Andresen, eds., Proc. SPIE4818, 63–70 (2002). [CrossRef]
  9. R. Díaz-Uribe, “Medium precision null screen testing of off-axis parabolic mirrors for segmented primary telescope optics: the case of the Large Millimeter Telescope,” Appl. Opt. 39, 2790–2804 (2000). [CrossRef]
  10. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, Mass., 1990).
  11. M. Campos-García, R. Díaz-Uribe, “Accuracy analysis in laser keratophography,” Appl. Opt. 41, 2065–2073 (2002). [CrossRef] [PubMed]
  12. L. Carmona-Paredes, R. Díaz-Uribe, “Imágenes circulares para pruebas con pantallas nulas,” in Proceedings of Memorias en Extenso; Sesiones de Óptica, C. G. Treviño, ed. (Academia Mexicana de Óptica, León, Gto., Mexico, 2002), pp. 58–60.
  13. L. Carmona-Paredes, R. Díaz-Uribe, “Corrección al cálculo del centroide de las manchas luminosas en la prueba de una superficie esférica,” in Proceedings of Memorias en Extenso; Sesiones de Óptica, C. G. Treviño, ed. (Academia Mexicana de Óptica, León, Gto., Mexico, 2003), pp. 46V03–1–46V03–10.
  14. W. Rasban, National Institutes of Health, USA: Image Processing and Analysis in Java, ImageJ V. 1.312u, http://rsb.info.nih.gov/ij/ .
  15. P. R. Bevington, D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992), pp. 161–166.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited