OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 34 — Dec. 1, 2004
  • pp: 6278–6284

Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display

Ignacio Moreno, Claudio Iemmi, Andrés Márquez, Juan Campos, and María J. Yzuel  »View Author Affiliations

Applied Optics, Vol. 43, Issue 34, pp. 6278-6284 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (130 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analysis of the diffraction efficiency of diffractive lenses displayed on spatial light modulators that depends on the modulation response of the display. An ideal display would produce continuous phase-only modulation, reaching a maximum phase-modulation depth of 2π. We introduce the concept of modulation diffraction efficiency that accounts for the effect of nonlinearities only in the phase modulation of the display. We review a diffractive model with which to evaluate this modulation efficiency, including modulation defects such as nonlinear phase modulation, coupled amplitude modulation, phase quantization, and a limited modulation depth. We apply this diffractive model to Fresnel lenses and show that these modulation defects produce a lens multiplex effect. Finally we demonstrate that the application of a minimum Euclidean projection principle leads to high modulation diffraction efficiency even if the phase-modulation depth is much less than 2π. We demonstrate that the modulation efficiency can exceed 90% for a modulation depth of 1.4π and can exceed 40% (the equivalent for a binary phase element) for a modulation depth of only 0.7π. Experimental results from use of a twisted nematic liquid-crystal display are presented to confirm these conclusions.

© 2004 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1970) Diffraction and gratings : Diffractive optics
(200.4560) Optics in computing : Optical data processing
(220.3620) Optical design and fabrication : Lens system design
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

Original Manuscript: March 24, 2004
Revised Manuscript: July 24, 2004
Published: December 1, 2004

Ignacio Moreno, Claudio Iemmi, Andrés Márquez, Juan Campos, and María J. Yzuel, "Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display," Appl. Opt. 43, 6278-6284 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Miyamoto, “The phase Fresnel lens,” J. Opt. Soc. Am. 51, 17–20 (1961). [CrossRef]
  2. J. A. Davis, D. M. Cottrell, J. E. Davis, R. A. Lilly, “Fresnel lens encoded binary phase-only filters for optical pattern recognition,” Opt. Lett. 14, 659–661 (1989). [CrossRef] [PubMed]
  3. Y. Takaki, H. Ohzu, “Liquid-crystal active lens: a reconfigurable lens employing a phase modulator,” Opt. Commun. 126, 123–134 (1996). [CrossRef]
  4. V. Laude, “Twisted-nematic liquid crystal pixelated active lens,” Opt. Commun. 153, 134–152 (1998). [CrossRef]
  5. A. Márquez, C. Iemmi, J. C. Escalera, J. Campos, S. Ledesma, J. A. Davis, M. J. Yzuel, “Amplitude apodizers encoded onto Fresnel lenses implemented on a phase-only spatial light modulator,” Appl. Opt. 40, 2316–2322 (2001). [CrossRef]
  6. D. A. Buralli, G. M. Morris, “Effects of diffraction efficiency on the modulation transfer function of diffractive lenses,” Appl. Opt. 31, 4389–4396 (1992). [CrossRef] [PubMed]
  7. W. Singer, H. Tiziani, “Born approximation for the nonparaxial scalar treatment of thick phase gratings,” Appl. Opt. 37, 1249–1555 (1998). [CrossRef]
  8. U. Levy, E. Marom, D. Mendlovic, “Thin element approximation for the analysis of blazed gratings: simplified model and validity limits,” Opt. Commun. 229, 11–21 (2004). [CrossRef]
  9. E. G. Loewen, M. Nevière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977). [CrossRef] [PubMed]
  10. D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994). [CrossRef]
  11. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16, 1143–1156 (1999). [CrossRef]
  12. E. Noponen, J. Turunen, A. Vasara, “Electromagnetic theory and design of diffractive-lens arrays,” J. Opt. Soc. Am. A 10, 434–443 (1993). [CrossRef]
  13. M. Rossi, G. L. Bona, E. E. Kunz, “Arrays of anamorphic phase-matched Fresnel elements for diode-to-fiber coupling,” Appl. Opt. 34, 2483–2488 (1995). [CrossRef] [PubMed]
  14. M. T. Gale, M. Rossi, “Continuous-relief diffractive lenses and microlens arrays,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyroswki, eds. (Akademie-Verlag, Berlin, 1997), Chap. 4.
  15. H. Dammann, “Blazed synthetic phase-only holograms,” Optik 31, 95–104 (1970).
  16. T. Yatagai, M. Takeda, “Effect of phase nonlinearity in kinoform,” Optik 43, 337–352 (1975).
  17. J. A. Davis, D. M. Cottrell, R. A. Lilly, S. W. Connely, “Multiplexed phase-encoded lenses written on spatial light modulators,” Opt. Lett. 14, 420–422 (1989). [CrossRef] [PubMed]
  18. E. Carcolé, J. Campos, S. Bosch, “Diffraction theory of Fresnel lenses encoded in low-resolution devices,” Appl. Opt. 33, 162–174 (1994). [CrossRef] [PubMed]
  19. M. Kuittinen, H. P. Herzig, “Encoding of efficient diffractive microlenses,” Opt. Lett. 20, 2156–2158 (1995). [CrossRef] [PubMed]
  20. J. Fan, D. Zaleta, K. S. Urquhart, S. H. Lee, “Efficient encoding algorithms for computer-aided design of diffractive optical elements by the use of electron-beam fabrication,” Appl. Opt. 34, 2522–2533 (1995). [CrossRef] [PubMed]
  21. U. Levy, D. Mendlovic, E. Marom, “Efficiency analysis of diffractive lenses,” J. Opt. Soc. Am. A 18, 86–93 (2001). [CrossRef]
  22. C. Chen, A. A. Sawchuk, “Nonlinear least-squares and phase-shifting quantization methods for diffractive optical element design,” Appl. Opt. 36, 7297–7306 (1997). [CrossRef]
  23. V. Arrizón, S. Sinzinger, “Modified quantization schemes for Fourier-type array generator,” Opt. Commun. 140, 309–315 (1997). [CrossRef]
  24. U. Levy, N. Cohen, D. Mendlovic, “Analytic approach for optimal quantization of diffractive optical elements,” Appl. Opt. 38, 5527–5532 (1999). [CrossRef]
  25. J. L. Bougrenet de la Tocnaye, L. Dupont, “Complex amplitude modulation by use of liquid crystal spatial light modulators,” Appl. Opt. 36, 1730–1741 (1997). [CrossRef] [PubMed]
  26. A. Márquez, J. Campos, M. J. Yzuel, I. Moreno, J. A. Davis, C. Iemmi, A. Moreno, A. Robert, “Characterization of edge effects in twisted nematic liquid crystal displays,” Opt. Eng. 39, 3301–3307 (2000). [CrossRef]
  27. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40, 2558–2564 (2001). [CrossRef]
  28. R. D. Juday, “Optical realizable filters and the minimum Euclidean distance principle,” Appl. Opt. 32, 5100–5111 (1993). [CrossRef] [PubMed]
  29. V. Laude, P. Réfrégier, “Multicriteria characterization of coding domains with optimal Fourier SLM filters,” Appl. Opt. 33, 4465–4471 (1994). [CrossRef] [PubMed]
  30. R. D. Juday, “Generality of matched filtering and minimum Euclidean distance projection for optical pattern recognition,” J. Opt. Soc. Am. A 18, 1882–1896 (2001). [CrossRef]
  31. I. Moreno, J. Campos, C. Gorecki, M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423–6432 (1995). [CrossRef]
  32. W. J. Dallas, “Computer generated holograms,” in The Computer in Optical Research, B. R. Frieden, ed., Vol. 41 of Topics in Applied Physics (Springer-Verlag, Berlin, 1980), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited