OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 34 — Dec. 1, 2004
  • pp: 6293–6303

Atmospheric refraction effects on optical-infrared sensor performance in a littoral-maritime environment

Arie N. de Jong, Gerrit de Leeuw, Hans Winkel, Peter J. Fritz, and Marcel M. Moerman  »View Author Affiliations


Applied Optics, Vol. 43, Issue 34, pp. 6293-6303 (2004)
http://dx.doi.org/10.1364/AO.43.006293


View Full Text Article

Enhanced HTML    Acrobat PDF (654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

During a number of transmission experiments over littoral waters, quantitative measurements of atmospheric refraction phenomena were carried out to determine the range performance of optical-IR sensors. Examples of distortion and intensity gain generated by spatial variations of the atmospheric refractive index are shown. A high-precision ray-tracing model has been developed for better understanding of the phenomena and to satisfy the requirements for accuracy of the meteorological data used in refraction models. The output of the model includes the propagation function, the intensity gain, and details of the ray curvature and of the optical phase behavior along the path between the target and the observer. Examples of measured transmission data and their interpretation are presented.

© 2004 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.4030) Atmospheric and oceanic optics : Mirages and refraction

History
Original Manuscript: July 28, 2003
Revised Manuscript: March 10, 2004
Published: December 1, 2004

Citation
Arie N. de Jong, Gerrit de Leeuw, Hans Winkel, Peter J. Fritz, and Marcel M. Moerman, "Atmospheric refraction effects on optical-infrared sensor performance in a littoral-maritime environment," Appl. Opt. 43, 6293-6303 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-34-6293


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. de Leeuw, A. M. J. van Eijk, D. R. Jensen, “MAPTIP experiment, marine aerosol properties and thermal imager performance: an overview,” TNO-FEL Rep. FEL-94-A140 (Netherlands Organization for Applied Scientific Research, The Hague, 1994).
  2. D. R. Jensen, S. G. Gathman, C. R. Zeisse, C. P. McGrath, G. De Leeuw, M. H. Smith, P. A. Frederickson, K. L. Davidson, “Electro-optical propagation assessment in coastal environments (EOPACE): summary and accomplishments,” Opt. Eng. 40, 1486–1498 (2001). [CrossRef]
  3. A. N. de Jong, G. De Leeuw, P. J. Fritz, M. M. Moerman, “Long-range transmission at low elevations over the ocean,” in E-O Propagation, Signature and System Performance under Adverse Meteorological Conditions Considering Out-of-Area Operations, Tech. Rep. RTO-MP1 (Research and Technology Organization, Brussels, 1998), pp. 1501–1512.
  4. C. R. Zeisse, B. D. Nener, R. V. Dewees, “Measurement of low-altitude infrared propagation,” Appl. Opt. 39, 873–886 (2000). [CrossRef]
  5. S. M. Doss-Hammel, C. R. Zeisse, A. E. Barrios, G. De Leeuw, M. M. Moerman, A. N. de Jong, P. A. Frederickson, K. L. Davidson, “Low-altitude infrared propagation in a coastal zone: refraction and scattering,” Appl. Opt. 41, 3706–3724 (2002). [CrossRef] [PubMed]
  6. A. N. de Jong, J. Winkel, M. M. Moerman, K. Stein, K. Weiss-Wrana, J. L. Forand, G. Potvin, J. R. Buss, A. Cini, H. H. Vogel, E. Stark, “TG16 point target detection experiment POLLEX, Livorno 2001,” in Infrared Technology and Applications XXVIII, B. F. Andresen, G. F. Fulop, M. Strojnik, eds., Proc. SPIE4820, 849–860 (2002). [CrossRef]
  7. J. S. Accetta, “Infrared Search and Track Systems,” in Infrared and Electro-Optical Systems Handbook, J. S. Acetta, ed. (SPIE Press, Bellingham, Wash., 1993), pp. 209–344.
  8. G. C. Holst, Electro-Optical Imaging System Performance, 2nd ed. (JCD, Winter Park, Fla., 2000).
  9. E. Tränkle, “Simulation of inferior mirages observed at the Halligen Sea,” Appl. Opt. 37, 1495–1505 (1998). [CrossRef]
  10. S. Y. van der Werf, “Ray tracing and refraction in the modified US1976 atmosphere,” Appl. Opt. 42, 354–366 (2003). [CrossRef] [PubMed]
  11. W. H. Lehn, “A simple parabolic model for the optics of the atmospheric surface layer,” Appl. Math. Model. 9, 447–453 (1985). [CrossRef]
  12. R. D. Sampson, E. P. Lozowski, A. E. Peterson, “Comparison of modeled and observed astronomical refraction of the setting Sun,” Appl. Opt. 42, 342–353 (2003). [CrossRef] [PubMed]
  13. W. H. Lehn, J. S. Morrish, “A three-parameter inferior mirage model for optical sensing of surface layer temperature profiles,” IEEE Trans. Geosci. Remote Sens. GE-24, 940–946 (1986). [CrossRef]
  14. A. N. de Jong, J. Winkel, “Enhanced IR point target detection by atmospheric effects,” in Infrared Technology and Applications XXVIII, B. F. Andresen, G. F. Fulop, M. Strojnik, eds., Proc. SPIE4820, 885–896 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited