OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 34 — Dec. 1, 2004
  • pp: 6304–6312

Fast radiative-transfer model based on the correlated k-distribution method for a high-resolution satellite sounder

Yuzo Mano and Hiroshi Ishimoto  »View Author Affiliations


Applied Optics, Vol. 43, Issue 34, pp. 6304-6312 (2004)
http://dx.doi.org/10.1364/AO.43.006304


View Full Text Article

Enhanced HTML    Acrobat PDF (210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A fast radiative-transfer model for the Atmospheric Infrared Sounder (AIRS) was developed by use of a correlated k-distribution method. Transmittances produced by the correlated k-distribution method are systematically displaced from those produced by a line-by-line method, and empirical correction is possible. A fast radiative model that includes this empirical correction has exhibited practical performance in tests of transmittance and brightness temperature that used an independent set of atmospheric profiles.

© 2004 Optical Society of America

OCIS Codes
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(030.5620) Coherence and statistical optics : Radiative transfer

History
Original Manuscript: March 31, 2004
Revised Manuscript: August 2, 2004
Published: December 1, 2004

Citation
Yuzo Mano and Hiroshi Ishimoto, "Fast radiative-transfer model based on the correlated k-distribution method for a high-resolution satellite sounder," Appl. Opt. 43, 6304-6312 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-34-6304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. H. Aumann, R. J. Pegano, “Atmospheric infrared sounder on the Earth observing system,” Opt. Eng. 33, 776–784 (1994). [CrossRef]
  2. M. Matricardi, R. Saunders, “Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5690 (1999). [CrossRef]
  3. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, Singapore, 2000).
  4. M. Matricardi, F. Chevallier, G. Kelly, J.-N. Thepaut, “An improved general fast radiative transfer model for assimilation of radiance observations,” Q. J. R. Meteorol. Soc. 130, 153–173 (2004). [CrossRef]
  5. V. Sherlock, A. Collard, S. Hannon, R. Saunders, “The Gastropod fast radiative transfer model for Advanced Infrared Sounders and characterization of its errors for radiance assimilation,” J. Appl. Meteorol. 42, 1732–1747 (2003). [CrossRef]
  6. A. A. Lacis, V. Oinas, “A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,” J. Geophys. Res. 96, 9027–9063 (1991). [CrossRef]
  7. D. P. Edwards, G. L. Francis, “Improvements to the correlated-k radiative transfer method: application to satellite infrared sounding,” J. Geophys. Res. 105, 18135–18156 (2000). [CrossRef]
  8. S. A. Clough, M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. II. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995). [CrossRef]
  9. J. Humlicek, “Optimized computation of the Voigt and complex probability functions,” J. Quant. Spectrosc. Radiat. Transfer 4, 437–444 (1982). [CrossRef]
  10. F. Schreier, “The Voigt and complex error function: a comparison of computational methods,” J. Quant. Spectrosc. Radiat. Transfer 48, 743–762 (1992). [CrossRef]
  11. R. J. Wells, “Rapid approximation to the Voigt-Faddeeva function and its derivatives,” J. Quant. Spectrosc. Radiat. Transfer 62, 29–48 (1999). [CrossRef]
  12. M. Kuntz, M. Hopfner, “Efficient line-by-line calculation of absorption coefficients,” J. Quant. Spectrosc. Radiat. Transfer 63, 97–114 (1999). [CrossRef]
  13. B. A. Fomin, “Effective interpolation technique for line-by-line calculations of radiation absorption in gases,” J. Quant. Spectrosc. Radiat. Transfer 53, 663–669 (1995). [CrossRef]
  14. L. Sparks, “Efficient line-by-line calculation of absorption coefficients to high numerical accuracy,” J. Quant. Spectrosc. Radiat. Transfer 57, 631–650 (1997). [CrossRef]
  15. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. V. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. 82, 5–44 (2003). [CrossRef]
  16. Intergovernmental Panel on Climate Change, Climate Change 2001, third assessment rep. (Cambridge U. Press, Cambridge, UK, 2001).
  17. R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford U. Press, New York, 1989).
  18. K. Masuda, T. Takashima, T. Takayama, “Emissivity of pure and sea waters for the modeled sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329 (1988). [CrossRef]
  19. Y. Zhang, “MODIS UCSB Emissivity Library,” [moderate resolution imaging spectrometer (MODIS) University of California, Santa Barbara (UCSB), 10November1999], retrieved 3October2003, http://www.icess.ucsb.edu/modis/EMIS/html/em.html .
  20. W. C. Snyder, Z. Wan, Y. Zhang, Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998). [CrossRef]
  21. B. Pinty, M. M. Verstraete, R. E. Dickinson, “A physical model of the bidirectional reflectance of vegetation canopies. 2. Inversion and validation,” J. Geophys. Res. 95, 11767–11775 (1990). [CrossRef]
  22. S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992). [CrossRef]
  23. M. J. Mlawer, D. C. Tobin, S. A. Clough, “A revised perspective on the water vapor continuum: the MT_CKD model,” submitted to J. Quant. Spectrosc. Radiat. Transfer; see also http://www.rtweb.aer.com/continuum_frame.html .
  24. L. M. McMillin, L. J. Crone, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach,” Appl. Opt. 34, 8936–8939 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited