OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 35 — Dec. 10, 2004
  • pp: 6421–6439

Optoelectronic Implementation of a 256-Channel Sonar Adaptive-Array Processor

Paulo E. X. Silveira, Gour S. Pati, and Kelvin H. Wagner  »View Author Affiliations


Applied Optics, Vol. 43, Issue 35, pp. 6421-6439 (2004)
http://dx.doi.org/10.1364/AO.43.006421


View Full Text Article

Acrobat PDF (1875 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an optoelectronic implementation of an adaptive-array processor that is capable of performing beam forming and jammer nulling in signals of wide fractional bandwidth that are detected by an array of arbitrary topology. The optical system makes use of a two-dimensional scrolling spatial light modulator to represent an array of input signals in 256 tapped delay lines, two acousto-optic modulators for modulating the feedback error signal, and a photorefractive crystal for representing the adaptive weights as holographic gratings. Gradient-descent learning is used to dynamically adapt the holographic weights to optimally form multiple beams and to null out multiple interference sources, either in the near field or in the far field. Space-integration followed by differential heterodyne detection is used for generating the system’s output. The processor is analyzed to show the effects of exponential weight decay on the optimum solution and on the convergence conditions. Several experimental results are presented that validate the system’s capacity for broadband beam forming and jammer nulling for linear and circular arrays.

© 2004 Optical Society of America

OCIS Codes
(040.2840) Detectors : Heterodyne
(070.1060) Fourier optics and signal processing : Acousto-optical signal processing
(090.7330) Holography : Volume gratings
(200.4560) Optics in computing : Optical data processing
(230.6120) Optical devices : Spatial light modulators
(280.5110) Remote sensing and sensors : Phased-array radar

Citation
Paulo E. X. Silveira, Gour S. Pati, and Kelvin H. Wagner, "Optoelectronic Implementation of a 256-Channel Sonar Adaptive-Array Processor," Appl. Opt. 43, 6421-6439 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-35-6421


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Widrow and S. D. Stearns, Adaptive Signal Processing (Prentice Hall, Englewood Cliffs, N.J., 1985).
  2. D. A. B. Miller, “Quantum-well self-electro-optic effect devices,” Opt. Quantum Electron. 22, S61–S98 (1990).
  3. T. L. Worchesky, K. J. Ritter, R. Martin, and B. Lane, “Large arrays of spatial light modulators hybridized to silicon integrated circuits,” Appl. Opt. 35, 1180–1186 (1996).
  4. E. A. Wan, “Temporal backpropagation for FIR neural networks,” in Proceedings of the International Joint Conference on Neural Networks (Omnipress, San Diego, Calif., 1990), Vol. 1, pp. 575–580.
  5. P. E. X. Silveira, G. S. Pati, and K. H. Wagner, “Optical finite impulse response neural networks,” Appl. Opt. 41, 4162–4180 (2002).
  6. P. E. X. Silveira and K. H. Wagner, “Optical finite impulse response neural networks,” in Algorithms, Devices, and Systems for Optical Information Processing III, B. Javidi and D. Psaltis, eds., Proc. SPIE 3804, 72–81 (1999).
  7. P. E. X. Silveira, G. S. Pati, and K. H. Wagner, “Optical implementation of a single-layer finite impulse response neural network,” in Proceedings of the International Conference on Optics in Computing 2000, R. A. Lessard and T. V. Galstian, eds., Proc. SPIE 4089, 656–667 (2000).
  8. L. J. G. B. Widrow, P. E. Mantey, and B. B. Goode, “Adaptive antenna systems,” Proc. IEEE 55, 2143–2161 (1967).
  9. D. Dolfi, F. Michelgabriel, S. Bann, and J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257 (1991).
  10. N. A. Riza, “Transmit/receive time-delay beam-forming optical architecture for phased-array antennas,” Appl. Opt. 30, 4594–4595 (1991).
  11. X. S. Yao and L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal-processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
  12. A. P. Goutzoulis and D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
  13. E. Toughlian and H. Zmuda, “Variable time-delay system for broadband phased array and other transversal filtering applications,” Opt. Eng. 32, 613–617 (1993).
  14. M. Y. Frankel and R. D. Esman, “Dynamic null steering in an ultrawideband time-steered array antenna,” Appl. Opt. 37, 5488–5494 (1998).
  15. J. H. Hong and T. Y. Chang, “Adaptive RF notch filtering using photorefractive two-beam coupling,” IEEE J. Quantum Electron. 30, 313–317 (1994).
  16. J. Rhodes, “Adaptive filter with a time-domain implementation using correlation cancellation loops,” Appl. Opt. 22, 282–287 (1983).
  17. J. H. Hong, “Broadband phased array beamforming,” in Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE 1102, 134–141 (1989).
  18. K. H. Wagner, S. Kraut, L. Griffiths, S. Weaver, R. Weverka, and A. Sarto, “Efficient true-time-delay adaptive array processing,” in Radar Processing, Technology, and Applications, W. J. Miceli, ed., Proc. SPIE 2845, 287–300 (1996).
  19. G. Kriehn, A. Kiruluta, P. E. X. Silveira, S. Weaver, S. Kraut, K. Wagner, R. T. Weverka, and L. Griffiths, “Optical BEAMTAP beam-forming and jammer-nulling system for broadband phased-array antennas,” Appl. Opt. 39, 212–230 (2000).
  20. E. A. Wan, “Time series prediction by using a connectionist network with internal delay lines,” in Time Series Prediction: Forecasting the Future and Understanding the Past, Vol. XVII of the Santa Fe Institute (SFI) Studies in the Science of Complexity, A. S. Weigend and N. A. Gershenfeld, eds. (Addison-Wesley, Reading, Mass., 1993), pp. 195–217.
  21. J. Feinberg, “Assymetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
  22. D. Armitage, “Liquid-crystal display device fundamentals,” in Electro-optical Displays, M. A. Karim, ed. (Marcel Dekker, New York, 1992), Chap. 2, pp. 19–67.
  23. A. Brignon and K. H. Wagner, “Polarization state evolution and eigenmode switching in photorefractive BSO,” Opt. Commun. 101, 239–246 (1993).
  24. R. T. Weverka, K. Wagner, and A. Sarto, “Photorefractive processing for large adaptive phased arrays,” Appl. Opt. 35, 1344–1366 (1996).
  25. A. W. Sarto, K. H. Wagner, R. T. Weverka, S. Weaver, and E. K. Walge, “Wide angular aperture holograms in photorefractive crystals by the use of orthogonally polarized write and read beams,” Appl. Opt. 35, 5765–5775 (1996).
  26. G. L. Abbas, V. W. S. Chan, and T. K. Yee, “Local-oscillator excess noise suppression for homodyne and heterodyne detection,” Opt. Lett. 8, 412–422 (1983).
  27. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  28. P. S. R. Diniz, “LMS-based algorithms,” in Adaptive Filtering: Algorithms and Practical Implementation (Kluwer Academic, Dordrecht, The Netherlands, 1997), Chap. 4, pp. 150–153.
  29. P. E. X. Silveira, “Optoelectronic signal processing using finite impulse response neural networks,” Ph.D., dissertation (University of Colorado at Boulder, Boulder, Colo., 2001).
  30. G. C. Petrisor, A. A. Goldstein, B. K. Jenkins, E. J. Herbulock, and A. R. Tanguay, “Convergence of backward-error-propagation learning in photorefractive crystals,” Appl. Opt. 35, 1328–1343 (1996).
  31. K. Y. Hsu, S. H. Lin, and P. Yeh, “Conditional convergence of photorefractive perceptron learning,” Opt. Lett. 18, 2135–2137 (1993).
  32. C. Bishop, “Learning and generalization,” in Neural Networks for Pattern Recognition (Clarendon Press, Oxford, UK, 1995), Chap. 9, pp. 338–340.
  33. J. R. T. Compton, Adaptive Antennas (Prentice-Hall, Englewood Cliffs, N.J., 1988).
  34. P. S. R. Diniz, “The least-mean-square (LMS) algorithm,” in Adaptive Filtering: Algorithms and Practical Implementation (Kluwer Academic, Dordrecht, The Netherlands, 1997), Chap. 3, pp. 75–78.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited