OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 35 — Dec. 10, 2004
  • pp: 6440–6453

Raman lidar observations of cloud liquid water

Vincenzo Rizi, Marco Iarlori, Giuseppe Rocci, and Guido Visconti  »View Author Affiliations

Applied Optics, Vol. 43, Issue 35, pp. 6440-6453 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the design and the performances of a Raman lidar for long-term monitoring of tropospheric aerosol backscattering and extinction coefficients, water vapor mixing ratio, and cloud liquid water. We focus on the system’s capabilities of detecting Raman backscattering from cloud liquid water. After describing the system components, along with the current limitations and options for improvement, we report examples of observations in the case of low-level cumulus clouds. The measurements of the cloud liquid water content, as well as the estimations of the cloud droplet effective radii and number densities, obtained by combining the extinction coefficient and cloud water content within the clouds, are critically discussed.

© 2004 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.7340) Atmospheric and oceanic optics : Water
(280.3640) Remote sensing and sensors : Lidar
(290.1090) Scattering : Aerosol and cloud effects
(290.1350) Scattering : Backscattering
(290.5860) Scattering : Scattering, Raman

Original Manuscript: November 24, 2003
Revised Manuscript: July 8, 2004
Manuscript Accepted: July 14, 2004
Published: December 10, 2004

Vincenzo Rizi, Marco Iarlori, Giuseppe Rocci, and Guido Visconti, "Raman lidar observations of cloud liquid water," Appl. Opt. 43, 6440-6453 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Moore, W. L. Gates, L. J. Mata, A. Underdal, “Advancing our understanding,” in Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), J. T. Houghton, Y. Ding, D. J. Griggs, M. Nouger, P. J. Van der Linden, X. Dai, K. Maskell, C. A. Johnson, eds. (Cambridge University, Cambridge, England, 2001).
  2. D. N. Whiteman, S. H. Melfi, “Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999). [CrossRef]
  3. G. Avila, J. M. Fernández, B. Maté, G. Tejeda, S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999). [CrossRef] [PubMed]
  4. G. Rocci, “Osservazioni lidar del contenuto di acqua in troposfera: contributo della fase liquida,” Tesi di Laurea (Dipartimento di Fisica, Università Degli Studi L’Aquila, L’Aquila, Italy, 2001).
  5. C. M. Penney, M. Lapp, “Raman-scattering cross sections for water vapor,” J. Opt. Soc. Am. 66, 422–425 (1976). [CrossRef]
  6. G. E. Walrafen, M. S. Hokmabadi, W.-H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85, 6964–6969 (1986). [CrossRef]
  7. T. A. Dolenko, I. V. Churina, V. V. Fadeev, S. M. Glushkov, “Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media,” J. Raman Spectrosc. 31, 863–870 (2000). [CrossRef]
  8. G. D’Arrigo, G. Maisano, F. Mallamace, P. Migliardo, F. Wanderlingh, “Raman scattering and structure of normal and supercooled water,” J. Chem. Phys. 75, 4264–4270 (1981). [CrossRef]
  9. D. N. Whiteman, G. E. Walrafen, W.-H. Yang, S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999). [CrossRef]
  10. B. R. Marshall, R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990). [CrossRef] [PubMed]
  11. R. B. Slusher, V. E. Derr, “Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in ice Ih,” Appl. Opt. 14, 2116–2120 (1975). [CrossRef] [PubMed]
  12. N. Abe, M. Ito, “Effects of hydrogen bonding on the Raman intensities of methanol, ethanol, and water,” J. Raman Spectrosc. 7, 161–167 (1978). [CrossRef]
  13. C. Hu, K. J. Voss, “In situ measurements of Raman scattering in clear ocean water,” Appl. Opt. 36, 6962–6967 (1997). [CrossRef]
  14. G. W. Faris, R. A. Copeland, “Wavelength dependence of the Raman cross section for liquid water,” Appl. Opt. 36, 2686–2688 (1997). [CrossRef] [PubMed]
  15. S. R. Ahmad, A. Iles, “Pre-resonance Raman excitation profile of the 3400 cm-1 mode of liquid water,” J. Raman Spectrosc. 32, 649–655 (2001). [CrossRef]
  16. M. Kerker, S. D. Druger, “Raman and fluorescent scattering by molecules embedded in spheres with radii up to several multiples of the wavelength,” Appl. Opt. 18, 1172–1179 (1979). [CrossRef] [PubMed]
  17. R. Thurn, W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated liquid droplets,” Appl. Opt. 24, 1515–1519 (1985). [CrossRef] [PubMed]
  18. S. H. Melfi, K. D. Evans, J. Li, D. Whiteman, R. Ferrare, G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997). [CrossRef] [PubMed]
  19. I. Veselovskii, V. Griaznov, A. Kolgotin, D. N. Whiteman, “Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 2. Numerical simulation,” Appl. Opt. 41, 5783–5791 (2002). [CrossRef] [PubMed]
  20. J. Burris, W. Heaps, “Temporal variations in the spectral output of a xenon fluoride excimer laser,” Appl. Opt. 34, 426–427 (1995). [CrossRef] [PubMed]
  21. D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on an XeF excimer laser,” Opt. Lett. 18, 247–249 (1993). [CrossRef] [PubMed]
  22. M. Iarlori, “Misure simultanee di vapor d’acqua, ozono ed aerosols,” Tesi di Laurea (Dipartimento di Fisica, Università Degli Studi L’Aquila, L’Aquila, Italy, 1998).
  23. V. Matthias, J. Bösenberg, V. Freudenthaler, A. Amodeo, D. Balis, G. Chourdakis, A. Cameron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hagard, S. Kreipl, R. Matthey, I. Mattis, V. Rizi, X. Wang, “Intercomparison of 15 aerosol lidar systems in the frame of EARLINET,” J. Aerosol Sci. 32, S397–S398 (2001).
  24. C. Bockmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, F. Rocadenbosch, J. Schneider, V. Shcherbakov, M. Wiegner, “EARLINET-lidar algorithm intercomparison,” J. Aerosol Sci. 32, S433–S434 (2001).
  25. V. Matthias, C. Bockmann, V. Freudenthaler, G. Pappalardo, J. Bosenberg, V. Amiridis, A. Amodeo, D. Balis, A. Boselli, A. Chaykovski, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, M. Frioud, A. Haagaard, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, R. Matthey, I. Mattis, A. Papayannis, V. Rizi, F. Rocadenbosch, J. Schneider, R. Schumacher, V. Shcherbakov, V. Simeonov, U. Wandinger, X. Wang, M. Wiegner, “Lidar intercomparisons on algorithm and system level in the frame of EARLINET,” Rep. 377 (Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2002).
  26. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  27. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, R. Leifer, “Raman lidar measurements of aerosol extinction and backscattering, 1, Methods and comparisons,” J. Geophys. Res. 103, 19663–19672 (1998). [CrossRef]
  28. D. N. Whiteman, G. Schwemmer, T. Berkoff, H. Plotkin, L. Ramos-Izquierdo, G. Pappalardo, “Performance modeling of an airborne Raman water-vapor lidar,” Appl. Opt. 40, 375–390 (2001). [CrossRef]
  29. D. D. Turner, W. F. Feltz, R. A. Ferrare, “Continuous water vapor profiles from operational ground-based active and passive remote sensors,” Bull. Am. Meteorol. Soc. 81, 1301–1318 (2000). [CrossRef]
  30. V. Rizi, M. Iarlori, P. Di Carlo, G. Visconti, G. Cinque, “A combined Rayleigh-Raman lidar for measurements of tropospheric water vapour and aerosol profiles,” Nuovo Cimento C 23, 53–64 (2000).
  31. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef] [PubMed]
  32. V. Sherlock, A. Hauchecorne, J. Lenoble, “Methodology for the independent calibration of Raman backscatter water-vapor lidar systems,” Appl. Opt. 38, 5816–5837 (1999). [CrossRef]
  33. I. A. Veselovskii, H. K. Cha, D. H. Kim, S. C. Choi, J. M. Lee, “Study of atmospheric water in gaseous and liquid state by using combined elastic-Raman depolarization lidar,” Appl. Phys. B 73, 739–744 (2001). [CrossRef]
  34. U. K. Krieger, C. A. Colberg, U. Weers, T. Koop, T. Peter, “Supercooling of single H2SO4/H2O aerosols to 158K: no evidence for the occurrence of the octrahydrate,” Geophys. Res. Lett. 27, 2097–2100 (2000). [CrossRef]
  35. V. Sherlock, A. Garnier, A. Hauchecorne, P. Keckhut, “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water vapor,” Appl. Opt. 38, 5838–5850 (1999). [CrossRef]
  36. A. H. Harvey, J. S. Gallagher, J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998). [CrossRef]
  37. R. G. Pinnick, S. G. Jennings, P. Chylek, C. Ham, W. T. Grandy, “Backscatter and extinction in water clouds,” J. Geophys. Res. 88, 6787–6796 (1983). [CrossRef]
  38. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  39. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  40. For a monomodal log-normal distribution, naerr, sc=Nsc/2π r lnσscexp-½ln2r/r0sc/ln2σ sc, where N(sc) is the droplet total concentration, r0(sc) is the mode radius, and lnσ(sc) is the geometric standard deviation. The effective radius is related to r0(sc) and lnσ(sc) according to reffsc≅r0scexp5 ln2σsc/2.
  41. J. Warner, “The microstructure of cumulus cloud. Part I. General features of the droplet spectrum,” J. Atmos. Sci. 26, 1049–1059 (1969). [CrossRef]
  42. A. V. Korolev, G. A. Isaac, I. P. Mazin, H. W. Barker, “Microphysical properties of continental clouds from in situ measurements,” Q. J. R. Meteorol. Soc. 127, 2117–2152 (2001).
  43. Q. Han, W. B. Rossow, A. A. Lacis, “Near-global survey of effective droplet radii in liquid water clouds using ISCCP data,” J. Climate 7, 465–497 (1994). [CrossRef]
  44. B. A. Fomin, I. P. Mazin, “Model for an investigation of radiative transfer in cloudy atmosphere,” Atmos. Res. 47–48, 127–153 (1998). [CrossRef]
  45. J.-L. Brenguier, H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, Y. Fouquart, “Radiative properties of boundary layer clouds: droplet effective radius versus number concentration,” J. Atmos. Sci. 57, 803–821 (2000). [CrossRef]
  46. S. S. Yum, J. G. Hudson, “Microphysical relationships in warm clouds,” Atmos. Res. 57, 81–104 (2001). [CrossRef]
  47. U. Wandinger, “Multiple-scattering influence on extinction- and backscatter-coefficient measurements with Raman and high-spectral-resolution lidars,” Appl. Opt. 37, 417–427 (1998). [CrossRef]
  48. D. N. Whiteman, “Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations,” Appl. Opt. 42, 2571–2592 (2003). [PubMed]
  49. D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42, 2593–2608 (2003). [CrossRef] [PubMed]
  50. A. V. Malinka, E. P. Zege, “Analytical modeling of Raman lidar return, including multiple scattering,” Appl. Opt. 42, 1075–1081 (2003). [CrossRef] [PubMed]
  51. C. Bockmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions,” Appl. Opt. 40, 1329–1342 (2001). [CrossRef]
  52. A. Ishimaru, R. J. Marks, L. Tsang, C. M. Lam, D. C. Park, S. Kitamura, “Particle-size distribution determination using optical sensing and neural networks,” Opt. Lett. 15, 1221–1223 (1990). [CrossRef] [PubMed]
  53. U. Amato, M. F. Carfora, V. Cuomo, C. Serio, “Objective algorithms for the aerosol problem,” Appl. Opt. 34, 5442–5452 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited