OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 35 — Dec. 10, 2004
  • pp: 6458–6464

Fiber loop ringdown for physical sensor development: pressure sensor

Chuji Wang and Susan T. Scherrer  »View Author Affiliations


Applied Optics, Vol. 43, Issue 35, pp. 6458-6464 (2004)
http://dx.doi.org/10.1364/AO.43.006458


View Full Text Article

Enhanced HTML    Acrobat PDF (122 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method of developing optical fiber pressure sensors by use of a fiber loop ringdown scheme is described. The fiber loop ringdown system is characterized in terms of the ringdown baseline stability, fiber transmission loss, and fiber refractive index. The overall sensor performance is demonstrated by use of sensing forces applied to the sensor head. The current device can sense pressures in the range of 0 to 9.8 × 106 Pa, converted approximately from the applied forces. The sensor’s linear response, repeatability, detection sensitivity, measuring dynamic range, and temperature tolerance are explored.

© 2004 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3510) Lasers and laser optics : Lasers, fiber
(300.6260) Spectroscopy : Spectroscopy, diode lasers

History
Original Manuscript: February 20, 2004
Revised Manuscript: August 30, 2004
Manuscript Accepted: September 2, 2004
Published: December 10, 2004

Citation
Chuji Wang and Susan T. Scherrer, "Fiber loop ringdown for physical sensor development: pressure sensor," Appl. Opt. 43, 6458-6464 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-35-6458


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology, Vols. III and IV (Kluwer Academic, Dordrecht, The Netherlands, 1999).
  2. K. T. V. Grattan, B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 2 (Chapman & Hall, London, 1998).
  3. For example, J. Greenwood, G. Dobre, “Optical pressure sensor for an aeronautical application using white light interferometry,” in Micro-Opto-Electro-Mechanical Systems, R. R. Syms, ed., Proc. SPIE4075, 94–100 (2000). [CrossRef]
  4. T. Bae, R. A. Atkins, H. F. Taylor, W. N. Gibler, “Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines,” Appl. Opt. 42, 1003–1007 (2003). [CrossRef] [PubMed]
  5. R. A. Atkins, C. E. Lee, H. F. Taylor, “Fiber-optic in-cylinder pressure sensor developed,” Diesel & Gas Turbine World Wide, April1995, http://www.fiberdynamics.com/pdf/dies_gas0595.pdf .
  6. D. McCarthy, ed., “Fiber optic sensor performs under pressure,” Photonics Technology World in Photonic Spectra, May1999, http://www.photonics.com/spectra/tech/XQ/ASP/techid.556/QX/read.htm .
  7. For example, PS-100 fiber optic pressure sensor (Fiber Dynamics, Inc., Bryan, Tex.), http://www.fiberdynamics.com .
  8. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  9. Y. Zhao, C. Yu, Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Opt. Laser Technol. 36, 39–42 (2004). [CrossRef]
  10. S. T. Oh, W. T. Han, U. C. Paek, Y. Chung, “Discrimination of temperature and strain with a single FBG on the birefringence effect,” Opt. Exp. 12, 724–729 (2004), http://www.opticsexpress.org . [CrossRef]
  11. S. Pal, T. Sun, K. T. V. Grattan, S. A. Wade, S. F. Collins, G. W. Baxter, B. Dussardier, G. Monnom, “Strain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination,” Rev. Sci. Instrum. 75, 1327–1331 (2004). [CrossRef]
  12. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  13. A. C. R. Pipino, J. W. Hudgens, R. E. Huie, “Evanescent cavity ring-down spectroscopy with a total-internal-reflection minicavity,” Rev. Sci. Instrum. 68, 2978–2989 (1997). [CrossRef]
  14. K. K. Lehmann, P. Rabinowitz, “High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster’s angle prism retrorefrectors,” U.S. patent5,973,864 (26October1999).
  15. T. von. Lerber, M. W. Sigrist, “Time constant extraction from noisy cavity ring-down signals,” Chem. Phys. Lett. 353, 131–137 (2002). [CrossRef]
  16. T. von. Lerber, M. W. Sigrist, “Cavity ring-down principle for fiber optic resonators: experimental realization of bending loss and evanescent-field sensing,” Appl. Opt. 41, 3567–3575 (2002). [CrossRef]
  17. D. E. Vogler, M. G. Muller, M. W. Sigrist, “Fiber-optical cavity sensing of hydrogen diffusion,” Appl. Opt. 42, 5413–5417 (2004). [CrossRef]
  18. M. Gupta, Hong Jiao, A. O’Keefe, “Cavity-enhanced spectroscopy in optical fibers,” Opt. Lett. 27, 1878–1880 (2002). [CrossRef]
  19. G. Stewart, K. Atherton, H. Yu, B. Culshaw, “Investigation of an optical fibre amplifier loop for intracavity and cavity ring-down loss measurements,” Meas. Sci. Technol. 12, 843–849 (2001). [CrossRef]
  20. R. S. Brown, I. Kozin, Z. Tong, R. D. Oleschuk, H.-P. Loock, “Fiber-loop ring-down spectroscopy,” J. Chem. Phys. 117, 10444–10447 (2002). [CrossRef]
  21. Z. Tong, M. Jakubinek, A. Wright, A. Gillies, H.-P. Loock, “Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples,” Rev. Sci. Instrum. 74, 4818–4826 (1997). [CrossRef]
  22. K. K. Lehmann, P. B. Tarsa, P. Rabinowitz, “Fiber-optic based cavity ring-down spectroscopy apparatus,” U.S. patent application number 20030107739 (patent pending).
  23. P. B. Tarsa, P. Rabinowitz, K. K. Lehmann, “Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy,” Chem. Phys. Lett. 383, 297–303 (2004). [CrossRef]
  24. Chuji Wang, S. T. Scherrer, “Fiber ringdown pressure sensors,” Opt. Lett. 29, 352–354 (2004). [PubMed]
  25. X. C. Li, F. Prinz, J. Seim, “Thermal behavior of a metal embedded fiber Bragg grating sensor,” Smart Mater. Struct. 10, 575–579 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited