OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 35 — Dec. 10, 2004
  • pp: 6465–6472

Influence of thermal deformations of the output windows of high-power laser systems on beam characteristics

Yufeng Peng, Zhaoxia Sheng, Hu Zhang, and Xiaowei Fan  »View Author Affiliations


Applied Optics, Vol. 43, Issue 35, pp. 6465-6472 (2004)
http://dx.doi.org/10.1364/AO.43.006465


View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By using the well-known Green’s function methods, we study the three-dimensional temperature distributions and thermal deformations of the output windows of unstable optical resonators induced by an incident annular laser beam. Some expressions and theoretical profiles of the temperature distributions and thermal deformations as functions of the radius and of the thickness of optical windows are obtained. Moreover, the influence of the thermal deformations of sapphire, silica, and silicon windows within unstable optical resonators on the Strehl ratio and on the far-field laser intensity distribution is also discussed. Under conditions of 50-kW intense laser irradiation during 5 s, the maximum thermal deformation in sapphire, silica, and silicon substrates is 1.993, 0.393, and 6.251 μm, respectively. Under the same conditions the Strehl ratio of sapphire is higher than that of silica.

© 2004 Optical Society of America

OCIS Codes
(140.1550) Lasers and laser optics : Chemical lasers
(140.3330) Lasers and laser optics : Laser damage
(140.3410) Lasers and laser optics : Laser resonators
(140.6810) Lasers and laser optics : Thermal effects
(260.1960) Physical optics : Diffraction theory
(350.5340) Other areas of optics : Photothermal effects

History
Original Manuscript: December 3, 2003
Revised Manuscript: July 11, 2004
Manuscript Accepted: September 10, 2004
Published: December 10, 2004

Citation
Yufeng Peng, Zhaoxia Sheng, Hu Zhang, and Xiaowei Fan, "Influence of thermal deformations of the output windows of high-power laser systems on beam characteristics," Appl. Opt. 43, 6465-6472 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-35-6465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993). [CrossRef]
  2. M. Endo, S. Nagatomo, S. Takeda, M. V. Zagidullin, V. D. Nikolaev, H. Fuijii, F. Wani, D. Sugimoto, K. Sunako, K. Nanri, T. Fujioka, “High-efficiency operation of a chemical oxygen-iodine laser using nitrogen as a buffer gas,” IEEE J. Quantum Electron. 34, 393–398 (1998). [CrossRef]
  3. D. Furman, B. D. Barmashenko, S. Rosenwaks, “Parametric study of an efficient supersonic chemical oxygen-iodine laser/jet generator system operating without buffer gas,” IEEE J. Quantum Electron. 34, 1068–1074 (1998). [CrossRef]
  4. G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525–1536 (1996). [CrossRef]
  5. M. R. Hallada, S. L. Seiffert, R. F. Walker, J. Vetrovec, “Exotic lasers: iodine laser deliver high laser via fiber,” Laser Focus World 36(5), 205–212 (2000).
  6. M. Sparks, “Optical distortion by heated windows in high-power laser systems,” J. Appl. Phys. 42, 5029–5046 (1971). [CrossRef]
  7. M. Mansuripur, G. A. N. Connell, J. W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982). [CrossRef] [PubMed]
  8. A. N. Burgess, K. E. Evans, M. Mackay, S. J. Abbott, “Comparison of transient thermal conduction in tellurium and organic dye based digital optical storage media,” J. Appl. Phys. 61, 74–80 (1987). [CrossRef]
  9. O. W. Shih, “A multilayer heat conduction solution for magneto-optical disk recording,” J. Appl. Phys. 75, 4382–4395 (1994). [CrossRef]
  10. A. Abtahi, P. F. Bräunlich, P. Kelly, J. Gasiot, “Laser stimulated thermoluminescence,” J. Appl. Phys. 58, 1626–1639 (1985). [CrossRef]
  11. W. A. McGahan, K. D. Cole, “Solutions of the heat conduction equation in multilayers for photothermal deflection experiments,” J. Appl. Phys. 72, 1362–1373 (1992). [CrossRef]
  12. P. Loza, D. Kouznetsov, R. Ortega, “Temperature distribution in a uniform medium heated by absorption of a Gaussian light beam,” Appl. Opt. 33, 3831–3836 (1994). [CrossRef] [PubMed]
  13. M. K. Loze, C. D. Wright, “Temperature distributions in laser-heated semi-infinite and finite-thickness media with convective surface losses,” Appl. Opt. 37, 6822–6832 (1998). [CrossRef]
  14. M. N. Özişik, Heat Conduction (Wiley, New York, 1980).
  15. Y. Peng, Z. Cheng, Y. Zhang, J. Qiu, “Temperature distributions and thermal deformations of mirror substrates in laser resonators,” Appl. Opt. 40, 4824–4830 (2001). [CrossRef]
  16. Y. Takeuti, S. Zaima, N. Noda, “Thermal stresses problems in industry. 1. On thermoelastic distortion in machine metals,” J. Therm. Stress 1, 199–210 (1978). [CrossRef]
  17. J. L. Nowinski, Theory of Thermoelasticity with Applications (Sijthoff & Noordhoff Alphen aan den Rijn, The Netherlands, 1978). [CrossRef]
  18. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).
  19. H. F. Wolf, Silicon Semiconduction Data (Signetics Corporation, Sunnyvale, Calif., 1969).
  20. H. E. Bennett, A. J. Glass, A. H. Guenther, B. E. Newnam, Laser Induced Damage in Optical Materials: 1980 (National Bureau of Standards, Boulder, Colo., 1981).
  21. W. M. Rohsenow, J. P. Hartnett, Handbook of Heat Transfer (McGraw-Hill, New York, 1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited