OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 35 — Dec. 10, 2004
  • pp: 6481–6486

In situ and on-line monitoring of CO in an industrial glass furnace by mid-infrared difference-frequency generation laser spectroscopy

Alireza Khorsandi, Ulrike Willer, Lothar Wondraczek, and Wolfgang Schade  »View Author Affiliations

Applied Optics, Vol. 43, Issue 35, pp. 6481-6486 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1005 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact mid-infrared (MIR) laser spectrometer based on difference-frequency generation (DFG) is applied as a portable and sensitive gas sensor for industrial process control and pollutant monitoring. We demonstrate the performance of such a MIR DFG gas sensor by recording the absorption spectra of the carbon monoxide (CO) P(28) absorption line in the atmosphere of a gas-fired glass melting furnace. For a gas temperature of approximately 1100 °C, the CO concentration in the recuperator channel is measured to be 400 parts per million.

© 2004 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.0300) Spectroscopy : Spectroscopy
(300.6340) Spectroscopy : Spectroscopy, infrared

Original Manuscript: March 11, 2004
Revised Manuscript: September 6, 2004
Manuscript Accepted: September 9, 2004
Published: December 10, 2004

Alireza Khorsandi, Ulrike Willer, Lothar Wondraczek, and Wolfgang Schade, "In situ and on-line monitoring of CO in an industrial glass furnace by mid-infrared difference-frequency generation laser spectroscopy," Appl. Opt. 43, 6481-6486 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Zhou, X. Liu, J. B. Jeffries, R. K. Hanson, “Development of a sensor for temperature and water vapour concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003). [CrossRef]
  2. S. D. Wehe, M. Allen, X. Liu, J. B. Jeffries, R. K. Hanson, “NO and CO absorption measurements with mid-IR quantum cascade laser for engine exhaust applications,” paper AIAA-2003-0588 presented at the Forty-First Aerospace Sciences Meeting, Reno, Nevada, 6–10 January, 2003 (American Institute of Aeronautics and Astronautics, Reston, Va., 2003).
  3. S. D. Wehe, D. M. Sonnenfroh, M. G. Allen, C. Gmachl, F. Capasso, “In-situ measurement of NO and CO using mid-IR QC lasers,” in Organic Thin Films for Photonic Applications, R. A. Norwood, J. R. Heflin, eds., Vol. 64 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), p. FC3–1.
  4. L. Manzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sipco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 859–863 (2001). [CrossRef]
  5. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagel, M. Beck, J. Faist, “GaAs/AlxGa1-x as quantum cascade laser,” Appl. Phys. Lett. 73, 3486–3488 (1998). [CrossRef]
  6. R. F. Curl, F. K. Tittel, “Tunable infrared laser spectroscopy,” Annu. Rep. Prog. Chem. Sect. C 98, 1–56 (2002). [CrossRef]
  7. F. K. Tittel, D. Richter, A. Fried, “Mid-infrared laser applications in spectroscopy,” Top. Appl. Phys. 89, 445–516 (2003).
  8. W. Chen, F. Cazier, D. Boucher, F. K. Tittel, P. B. Davies, “Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application,” Laser Phys. 11, 594–599 (2001).
  9. U. Willer, T. Blanke, W. Schade, “Difference-frequency generation in AgGaS2: Sellmeier and temperature-dispersion equations,” Appl. Opt. 40, 5439–5445 (2001). [CrossRef]
  10. D. Richter, A. Fried, B. P. Wert, J. G. Walega, F. K. Tittel, “Development of a tunable mid-infrared difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2000). [CrossRef]
  11. D. Richter, D. G. Lancaster, R. F. Curl, W. Neu, F. K. Tittel, “Compact mid-infrared trace gas sensor based on difference-frequency generation of two diode lasers in periodically poled LiNbO3,” Appl. Phys. B 67, 347–350 (1998). [CrossRef]
  12. J. Limpert, H. Zelimer, A. Tünnermann, D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, “Tunable continuous wave DFG-based gas sensor using fiber amplified 1.5 μm external cavity diode laser and high power 1 μm diode laser,” Electron. Lett. 36, 1739–1741 (2000). [CrossRef]
  13. N. Matsuoka, S. Yamaguchi, K. Nanri, T. Fujioka, D. Richter, F. K. Tittel, “Yb fiber laser pumped mid-infrared source based on difference frequency generation and its application to ammonia detection,” Jpn. J. Appl. Phys. Part 1 40, 625–678 (2001). [CrossRef]
  14. A. Khorsandi, U. Willer, P. Geiser, W. Schade, “External short-cavity diode-laser for MIR difference-frequency generation,” Appl. Phys. B 77, 509–513 (2003). [CrossRef]
  15. L. Wondraczek, A. Khorsandi, U. Willer, G. Heide, W. Schade, G. H. Frischat, “Mid-infrared laser-tomographic imaging of carbon monoxide in laminar flames by difference-frequency generation,” Combust. Flame 138, 30–39 (2004). [CrossRef]
  16. L. Wondraczek, G. Heide, G. H. Frischat, A. Khorsandi, U. Willer, W. Schade, “Mid-infrared laser absorption spectroscopy for process and emission control in the glass melting industry. Part 1. Potentials,” Glass Sci. Technol. 77, 68–76 (2004).
  17. A. J. Faber, R. Koch, “High temperature in-situ IR laser absorption CO-sensor for combustion control,” in the Proceedings of the Tenth International Symposium on Applications of Laser Techniques for Fluid Mechanics (n.p., 2000), paper 18.6.
  18. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  19. H. Pieper, “The Flex Melter—a new melting furnace for the glass industry as alternative to pot furnaces,” Glastech. Ber. 63K, 144–156 (1990).
  20. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996). [CrossRef] [PubMed]
  21. P. E. Ciddor, R. J. Hill, “Refractive index of air. 2. Group index,” Appl. Opt. 38, 1663–1667 (1999). [CrossRef]
  22. J. C. Owens, “Optical refractive index of air: dependence on pressure, temperature, and composition,” Appl. Opt. 6, 51–59 (1967). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited