OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 35 — Dec. 10, 2004
  • pp: 6492–6499

Temporal Dependence of the Enhancement of Material Removal in Femtosecond-Nanosecond Dual-Pulse Laser-Induced Breakdown Spectroscopy

Jon Scaffidi, William Pearman, J. Chance Carter, Bill W. Colston, and S. Michael Angel  »View Author Affiliations

Applied Optics, Vol. 43, Issue 35, pp. 6492-6499 (2004)

View Full Text Article

Acrobat PDF (608 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Despite the large neutral atomic and ionic emission enhancements that have been noted in collinear and orthogonal dual-pulse laser-induced breakdown spectroscopy, the source or sources of these significant signal and signal-to-noise ratio improvements have yet to be explained. In the research reported herein, the combination of a femtosecond preablative air spark and a nanosecond ablative pulse yields eightfold and tenfold material removal improvement for brass and aluminum, respectively, but neutral atomic emission is enhanced by only a factor of 3–4. Additionally, temporal correlation between enhancement of material removal and of atomic emission is quite poor, suggesting that the atomic-emission enhancements noted in the femtosecond-nanosecond pulse configuration result in large part from some source other than simple improvement in material removal.

© 2004 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.2140) Spectroscopy : Emission
(300.6210) Spectroscopy : Spectroscopy, atomic

Jon Scaffidi, William Pearman, J. Chance Carter, Bill W. Colston, and S. Michael Angel, "Temporal Dependence of the Enhancement of Material Removal in Femtosecond-Nanosecond Dual-Pulse Laser-Induced Breakdown Spectroscopy," Appl. Opt. 43, 6492-6499 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. F. Brech and L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).
  2. L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  3. Y. I. Lee, K. Song, and J. Sneddon, Laser-Induced Breakdown Spectrometry (Nova Science, Huntington, N.Y., 2000).
  4. V. Majidi and M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
  5. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
  6. C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta B 50, 1059–1075 (1995).
  7. M. Noda, Y. Deguchi, S. Iwasaki, and N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 701–709 (2002).
  8. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
  9. J. Gruber, J. Heitz, H. Strasser, D. Bauerle, and N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 685–693 (2001).
  10. A. K. Rai, F. Y. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Opt. 42, 2078–2084 (2003).
  11. B. J. Marquardt, S. R. Goode, and S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
  12. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
  13. J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
  14. P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, Jr., S. J. Priebe, and D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
  15. F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
  16. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
  17. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
  18. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
  19. P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
  20. K. L. Eland, D. N. Stratis, J. C. Carter, and S. M. Angel, “The development of a dual-pulse fiber-optics LIBS probe for in-situ elemental analysis,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh and R. Spellicy, eds., Proc. SPIE 3853, 288–294 (1999).
  21. D. N. Stratis, K. L. Eland, and S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh and R. Spellicy, eds., Proc. SPIE 3534, 592–600 (1999).
  22. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
  23. G. W. Rieger, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta B 58, 497–510 (2003).
  24. K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
  25. V. Margetic, K. Niemax, and R. Hergenroder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2003).
  26. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
  27. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
  28. C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby III, D. L. Monts, and R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).
  29. Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, and J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
  30. Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, and J. Sneddon, “Interaction of an excimer-laser beam with metals. III. The effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1597–1604 (1992).
  31. H. Matsuta and K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
  32. L. St-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
  33. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
  34. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
  35. L. St-Onge, V. Detalle, and M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
  36. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
  37. D. N. Stratis, K. L. Eland, and S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
  38. D. N. Stratis, K. L. Eland, and S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
  39. D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
  40. J. Scaffidi, J. Pender, B. Pearman, S. R. Goode, B. W. Colston, Jr., J. C. Carter, and S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
  41. J. Scaffidi, W. Pearman, M. Lawrence, J. C. Carter, B. W. Colston, Jr., and S. M. Angel, “Spatial and temporal dependence of interspark interactions in femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 43, 5243–5250.
  42. A. Sullivan, J. Bonlie, D. F. Price, and W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt. Lett. 21, 603–605 (1996).
  43. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, and Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208–209, 181–188 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited