OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 36 — Dec. 20, 2004
  • pp: 6568–6579

Miniaturization of holographic Fourier-transform spectrometers

Nikolay I. Agladze and Albert J. Sievers  »View Author Affiliations

Applied Optics, Vol. 43, Issue 36, pp. 6568-6579 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (254 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wave propagation equations in the stationary-phase approximation have been used to identify the theoretical bounds of a miniature holographic Fourier-transform spectrometer (HFTS). It is demonstrated that the HFTS throughput can be larger than for a scanning Fourier-transform spectrometer. Given room- or a higher-temperature constraint, a small HFTS has the potential to outperform a small multichannel dispersive spectrograph with the same resolving power because of the size dependence of the signal-to-noise ratio. These predictions are used to analyze the performance of a miniature HFTS made from simple optical components covering a broad spectral range from the UV to the near IR. The importance of specific primary aberrations in limiting the HFTS performance has been both identified and verified.

© 2004 Optical Society of America

OCIS Codes
(220.1010) Optical design and fabrication : Aberrations (global)
(220.4830) Optical design and fabrication : Systems design
(260.3160) Physical optics : Interference
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

Original Manuscript: July 8, 2004
Revised Manuscript: September 13, 2004
Manuscript Accepted: September 18, 2004
Published: December 20, 2004

Nikolay I. Agladze and Albert J. Sievers, "Miniaturization of holographic Fourier-transform spectrometers," Appl. Opt. 43, 6568-6579 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. P. Petrov, B. N. Grechushnikov, “Photographic method of recording in Fourier spectrometry,” Opt. Spectrosc. 19, 82–83 (1965).
  2. G. W. Stroke, A. T. Funkhouser, “Fourier transform spectroscopy using holographic imaging without computing and with stationary interferometers,” Phys. Lett. 16, 272–274 (1965). [CrossRef]
  3. K. Yoshihara, A. Kitade, “Holographic spectra using a triangle path interferometer,” Jpn. J. Appl. Phys. 6, 116 (1967). [CrossRef]
  4. K. Kamiya, K. Yoshihara, K. Okada, “Holographic spectra obtained with a Lloyd’s mirror,” Jpn. J. Appl. Phys. 7, 1129 (1968). [CrossRef]
  5. K. Yoshihara, K. Nakashima, M. Higuchi, “Holographic spectroscopy using a Mach-Zehnder interferometer,” Jpn. J. Appl. Phys. 15, 1169–1170 (1976). [CrossRef]
  6. J. W. Cooley, J. W. Tukey, “An algorithm for machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965). [CrossRef]
  7. P. Fellgett, “A propos de la theorie du spectrometre interferentiel multiplex,” J. Phys. Radium 19, 187–191 (1958). [CrossRef]
  8. J. D. Strong, G. A. Vanasse, “Interferometric spectroscopy in the far infrared,” J. Opt. Soc. Am. 49, 844–850 (1959). [CrossRef]
  9. P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23, 268–312 (1960). [CrossRef]
  10. L. Genzel, “Aperiodic and periodic interference modulation for spectrographic purposes,” J. Mol. Spectrosc. 4, 241–261 (1960). [CrossRef]
  11. P. L. Richards, “High-resolution Fourier transform spectroscopy in the far-infrared,” J. Opt. Soc. Am. 54, 1474–1484 (1964). [CrossRef]
  12. I. G. Nolt, A. J. Sievers, “Stress induced frequency shift of a lattice resonant mode,” Phys. Rev. Lett. 16, 1103–1105 (1966). [CrossRef]
  13. H. D. Drew, A. J. Sievers, “Far-infrared absorption in superconducting and normal lead,” Phys. Rev. Lett. 19, 697–699 (1967). [CrossRef]
  14. L. Genzel, K. Sakai, “Interferometry from 1950 to present,” J. Opt. Soc. Am. 67, 871–879 (1977). [CrossRef]
  15. T. Okamoto, S. Kawata, S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23, 269–273 (1984). [CrossRef] [PubMed]
  16. T. H. Barnes, “Photodiode array Fourier transform spectrometer with improved dynamic range,” Appl. Opt. 24, 3702–3706 (1985). [CrossRef] [PubMed]
  17. L. V. Egorova, I. E. Leshcheva, B. N. Popov, A. Y. Stroganova, “Static fast response Fourier spectrometer having a linear CCD image forming system,” J. Opt. Technol. 56, 220–221 (1989).
  18. J. V. Sweedler, M. B. Denton, “Spatially encoded Fourier transform spectroscopy in the ultraviolet to the near infrared,” Appl. Spectrosc. 43, 1378–1384 (1989). [CrossRef]
  19. W. H. Smith, W. V. Schempp, “Digital array scanned interferometers for astronomy,” Exp. Astron. 1, 389–405 (1991). [CrossRef]
  20. M.-L. Junttila, “Stationary Fourier-transform spectrometer,” Appl. Opt. 31, 4106–4112 (1992). [CrossRef] [PubMed]
  21. S. Takahashi, J. S. Ahn, S. Asaka, T. Kitagawa, “Multichannel Fourier transform spectroscopy using two-dimensional detection of the interferogram and its application to Raman spectroscopy,” Appl. Spectrosc. 47, 863–868 (1993). [CrossRef]
  22. P. G. Lucey, K. Horton, T. Williams, K. Hinck, C. Budney, J. B. Rafert, T. B. Rusk, “SMIFTS: a cryogenically-cooled spatially-modulated imaging infrared interferometer spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 130–141 (1993). [CrossRef]
  23. M. J. Padgett, A. R. Harvey, A. J. Duncan, W. Sibbett, “Single-pulse, Fourier-transform spectrometer having no moving parts,” Appl. Opt. 33, 6035–6040 (1994). [CrossRef] [PubMed]
  24. W. H. Smith, “Digital array scanned interferometer: sensor and results,” Appl. Opt. 35, 2902–2909 (1996). [CrossRef] [PubMed]
  25. M. Hashimoto, H. Hamaguchi, “Construction of a multichannel Fourier transform infrared spectrometer for single-event time-resolved spectroscopy,” Appl. Spectrosc. 50, 1030–1033 (1996). [CrossRef]
  26. B. A. Patterson, J. P. Lenney, W. Sibbett, B. Hirst, N. K. Hedges, M. J. Padgett, “Detection of benzene and other gases with an open-path, static Fourier-transform UV spectrometer,” Appl. Opt. 37, 3172–3175 (1998). [CrossRef]
  27. J. T. Daly, E. A. Johnson, A. Bodkin, W. A. Stevenson, D. A. White, “Recent advances in miniaturization of infrared spectrometers,” in Silicon-based Optoelectronics II, D. J. Robbins, D. C. Houghton, eds., Proc. SPIE3953, 70–87 (2000). [CrossRef]
  28. J. P. Ferguson, S. Schoenfelder, “Micromoulded spectrometers produced by the LIGA process,” in Proceedings of IEEE Colloquium on Microengineering in Optics and Optoelectronics (Institute of Electrical and Electronics Engineers, London, UK, 1999), pp. 11/11–11/10.
  29. H. J. Caulfield, “Spectroscopy,” in Handbook of Optical Holography, H. J. Caulfield, ed. (Academic, New York, 1979), pp. 587–594.
  30. A. Walther, The Ray and Wave Theory of Lenses, Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, UK, 1995).
  31. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972).
  32. R. F. Horton, “Optical design for a high-etendue imaging Fourier transform spectrometer,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 300–315 (1996). [CrossRef]
  33. K. Dohlen, “Interferometric spectrometer for liquid mirror survey telescopes,” in Optical Telescopes of Today and Tomorrow: Following in the Direction of Tycho Brahe, A. Ardeberg, ed., Proc. SPIE2871, 1359–1364 (1996). [CrossRef]
  34. F. D. Kahn, “The signal: noise ratio of a suggested spectral analyzer,” Astrophys. J. 129, 518–521 (1959). [CrossRef]
  35. M. H. Tai, M. Harwit, “Fourier and Hadamard transform spectrometers: a limited comparison,” Appl. Opt. 15, 2664–2666 (1976). [CrossRef] [PubMed]
  36. R. R. Treffers, “Signal-to-noise ratio in Fourier spectroscopy,” Appl. Opt. 16, 3103–3106 (1977). [CrossRef] [PubMed]
  37. J. Zhao, R. L. McCreery, “Multichannel FT-Raman spectroscopy: noise analysis and performance assesment,” Appl. Spectrosc. 51, 1687–1697 (1997). [CrossRef]
  38. F. M. Reininger, “The application of large format, broadband quantum well infrared photodetector arrays to spatially modulated prism interferometers,” Infrared Phys. Technol. 42, 345–362 (2001). [CrossRef]
  39. S. P. Davis, M. C. Abrams, J. W. Brault, Fourier Transform Spectrometry (Academic, San Diego, Calif., 2001).
  40. K. Ito, ed., Encyclopedic Dictionary of Mathematics, 2nd ed. (MIT, Cambridge, Mass., 1987), Vol. 2.
  41. R. G. Sellar, J. B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33, 3087–3092 (1994). [CrossRef]
  42. W. T. Welford, Aberrations of Optical Systems (Adam Hilger, Bristol, UK, 1986).
  43. R. R. Shannon, The Art and Science of Optical Design (Cambridge U. Press, Cambridge, UK, 1997). [CrossRef]
  44. M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, New York, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited