OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 43, Iss. 36 — Dec. 20, 2004
  • pp: 6580–6595

Two-wave-plate compensator method for single-point retardation measurements

Carole C. Montarou and Thomas K. Gaylord  »View Author Affiliations

Applied Optics, Vol. 43, Issue 36, pp. 6580-6595 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (1563 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The two-wave-plate compensator (TWC) technique is introduced for single-point retardation measurements. The TWC method uses a known wave plate together with a wave plate of unknown retardation and produces a linearly polarized output that allows a null of intensity to be detected. The TWC method is compared both theoretically and experimentally with the existing Brace–Köhler and Sénarmont methods. The resolution of the TWC is shown to be 0.02 nm. TWC enables the measurement of a sample retardation with as little as 0.13% error and thus is more accurate than either the Brace–Köhler or the Sénarmont method.

© 2004 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

Original Manuscript: February 10, 2004
Manuscript Accepted: May 11, 2004
Published: December 20, 2004

Carole C. Montarou and Thomas K. Gaylord, "Two-wave-plate compensator method for single-point retardation measurements," Appl. Opt. 43, 6580-6595 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Kitamura, S. Kimura, Y. Miyazawa, Y. Mori, O. Kamada, “Stress-birefringence associated with facets of rare-earth garnets grown from the melt; a model and measurement of stress-birefringence observed in thin sections,” J. Cryst. Growth 62, 351–359 (1983). [CrossRef]
  2. K. Kitamura, Y. Miyazawa, Y. Mori, S. Kimura, M. Higuchi, “Origin of difference in lattice spacings between on- and off-facet regions of rare-earth garnets grown from the melt,” J. Cryst. Growth 64, 207–216 (1983). [CrossRef]
  3. K. Kitamura, N. Lyi, S. Kimura, “Growth-induced optical anisotropy of epitaxial garnet films grown on (110)-oriented substrates,” J. Appl. Phys. 60, 1486–1489 (1986). [CrossRef]
  4. K. Katoh, K. Hammar, P. Smith, R. Oldenbourg, “Birefringence imaging directly reveals architectural dynamics of filamentous actin in living growth cones,” Mol. Biol. Cell 10, 197–210 (1999). [CrossRef] [PubMed]
  5. R. Oldenbourg, E. D. Salmon, P. T. Tran, “Birefringence of single and bundled microtubules,” Biophys. J. 74, 645–654 (1998). [CrossRef] [PubMed]
  6. B. Cense, T. C. Chen, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002). [CrossRef]
  7. A. Redner, “Photoelastic measurements by means of computer-assisted spectral-contents analysis,” Exp. Mech. 25, 148–153 (1985). [CrossRef]
  8. A. Redner, “Photoelastic measurements of residual stresses for NDE,” in Photomechanics and Speckle Metrology, F.-P. Chiang, ed., Proc. SPIE814, 16–19 (1987). [CrossRef]
  9. J. E. Houston, “The effect of stress on the nanomechanical properties of Au surfaces,” in Structure and Evolution of Surfaces, R. Cammarata, ed., Proc. Mater. Res. Soc.440, 177–187 (1997).
  10. E. D. Fabrizio, M. Baciocchi, M. Gentili, L. Grella, “Microphotonic devices fabricated by silicon micromachining techniques,” J. Appl. Phys. 36, 7757–7762 (1997).
  11. P. L. Chu, T. Whitbread, “Measurement of stresses in optical fiber and preform,” Appl. Opt. 21, 4241–4245 (1982). [CrossRef] [PubMed]
  12. X. Zhao, C. Li, Y. Z. Xu, “Stress-induced birefringence control in optical planar waveguides,” Opt. Lett. 28, 564–566 (2003). [CrossRef] [PubMed]
  13. S. Y. Cheng, K. S. Chiang, H. P. Chan, “Birefringence in benzocyclobutene strip optical waveguides,” IEEE Photon. Technol. Lett. 15, 700–702 (2003). [CrossRef]
  14. D. J. Wissuchek, C. W. Ponader, J. J. Price, “Analysis of residual stress in optical fiber,” in Optical Fiber Reliability and Testing, Proc. SPIE3848, 34–43 (1999). [CrossRef]
  15. G. W. Scherer, “Thermal stress in a cylinder: application to optical waveguide blanks,” J. Non-Cryst. Solids 34, 223–238 (1979). [CrossRef]
  16. C. S. Kim, Y. Han, B. H. Lee, W. T. Han, U. C. Paek, Y. Chung, “Induction of the refractive index change in B-doped optical fibers through relaxation of the mechanical stress,” Opt. Commun. 185, 337–342 (2000). [CrossRef]
  17. D. A. Krohn, “Determination of axial stress in clad glass fibers,” J. Am. Ceram. Soc. 53, 505–507 (1970). [CrossRef]
  18. U. C. Paek, C. R. Kurkjian, “Calculation of cooling rate and induced stresses in drawing of optical fibers,” J. Am. Ceram. Soc. 58, 330–335 (1975). [CrossRef]
  19. B. H. Kim, Y. Park, D. Y. Kim, U. C. Paek, W. T. Han, “Observation and analysis of residual stress development resulting from OH impurity in optical fibers,” Opt. Lett. 27, 806–808 (2002). [CrossRef]
  20. G. W. Scherer, “Stress-induced index profile distortion in optical waveguides,” Appl. Opt. 19, 2000–2006 (1980). [CrossRef] [PubMed]
  21. G. W. Scherer, “Stress-optical effects in optical waveguides,” J. Non-Cryst. Solids 38, 201–204 (1980). [CrossRef]
  22. K. Dossou, S. LaRochelle, M. Fontaine, “Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber,” J. Lightwave Technol. 20, 1463–1469 (2002). [CrossRef]
  23. B. H. Kim, Y. Park, T. J. Ahan, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, W. T. Han, “Residual stress relaxation in the core of optical fiber by CO2 laser irradiation,” Opt. Lett. 26, 1657–1659 (2001). [CrossRef]
  24. B. H. Kim, T. J. Ahan, D. Y. Kim, B. H. Lee, Y. Chung, U. C. Paek, W. T. Han, “Effect of CO2 laser irradiation on the refractive-index change in optical fibers,” Appl. Opt. 41, 3809–3815 (2002). [CrossRef] [PubMed]
  25. Y. Park, T. J. Ahn, Y. H. Kim, W. T. Han, U. C. Paek, D. Y. Kim, “Measurement method for profiling the residual stress and the strain–optic coefficient of an optical fiber,” Appl. Opt. 41, 21–26 (2001). [CrossRef]
  26. Y. Park, U. C. Paek, D. Y. Kim, “Complete determination of the stress tensor of a polarization-maintaining fiber by photoelastic tomography,” Opt. Lett. 27, 1217–1219 (2002). [CrossRef]
  27. D. A. B. Miller, “Physical reasons for optical interconnection,” Intl. J. Opt. 11, 155–168 (1997).
  28. L. G. Peralta, A. A. Bernussi, H. Temkin, M. M. Borhani, D. E. Doucette, “Silicon-dioxide waveguides with low birefringence,” IEEE J. Quantum Electron. 39, 874–879 (2003). [CrossRef]
  29. A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition (FHD) through tailoring of the overcladding,” J. Lightwave Technol. 18, 193–198 (2000). [CrossRef]
  30. M. Huang, “Stress effects on the performance of optical waveguides,” Intl. J. Solids Struct. 40, 1615–1632 (2003). [CrossRef]
  31. A. Ajovalasit, S. Baronne, G. Petrucci, “A review of automated methods for the collection and analysis of photoelastic data,” J. Strain Anal. 33, 75–91 (1998). [CrossRef]
  32. A. Ajovalasit, S. Baronne, G. Petrucci, “Automated photoelasticity in white light: influences of quarter-wave plates,” J. Strain Anal. 30, 29–34 (1995). [CrossRef]
  33. T. C. Oakberg, “Measurement of low-level strain birefringence in optical elements using a photoelastic modulator,” in Polarization Analysis and Applications to Device, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 17–20 (1996).
  34. B. Wang, T. Oakberg, “A new instrument for measuring both magnitude and angle of low level linear birefringence,” Rev. Sci. Instrum. 70, 3847–3854 (1999). [CrossRef]
  35. M. M. Swann, J. M. Mitchison, “Refinements in polarized light microscopy,” J. Exper. Biol. 27, 226–237 (1950).
  36. R. D. Allen, L. I. Rebhun, “Photoelectric measurement of small fluctuating retardations in weakly birefringent, light-scattering biological objects,” Exp. Cell Res. 29, 583–592 (1963). [CrossRef] [PubMed]
  37. R. Oldenbourg, G. Mei, “New polarized light microscope with precision universal compensator,” J. Microsc. 180, 140–147 (1995). [CrossRef] [PubMed]
  38. N. H. Hartshorne, A. Stuart, Crystals And The Polarizing Microscope, A Handbook For Chemists And Others (Edward Arnold, London, 1960).
  39. G. S. Smith, An Introduction to Classical Electromagnetic Radiation (Cambridge University, New York, 1997).
  40. B. Wang, “An improved method for measuring low-level linear birefringence in optical materials,” in Inorganic Optical Materials, A. J. Marker, ed., Proc. SPIE3424, 120–124 (1998). [CrossRef]
  41. B. Wang, “Accuracy assessment of a linear birefringence measurement system using a Soleil–Babinet compensator,” Rev. Sci. Instrum. 72, 4066–4070 (2001). [CrossRef]
  42. B. Wang, “Linear birefringence measurement instrument using two photoelastic modulators,” Opt. Eng. 41, 981–987 (2002). [CrossRef]
  43. C. C. Montarou, T. K. Gaylord, “Single-point two-waveplate compensator for optical retardation, thickness, and refractive index measurement,” U.S. utility patent60/506,381 (24September2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited