OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 36 — Dec. 20, 2004
  • pp: 6609–6619

Slotted multimode-interference devices

David M. Mackie and Andrew W. Lee  »View Author Affiliations


Applied Optics, Vol. 43, Issue 36, pp. 6609-6619 (2004)
http://dx.doi.org/10.1364/AO.43.006609


View Full Text Article

Enhanced HTML    Acrobat PDF (1354 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a novel modification of multimode-interference devices that has broad applicability. The modification involves introducing a slot (or slots), of a specific width and effective refractive index and at a specific position, that runs the longitudinal length of the multimode-interference region. Introducing N slots reduces the self-image length by a factor of N + 1. Varying the effective refractive index or width of the slot(s) creates a switch. The slot modification can be accomplished in a variety of ways, actually increases bandwidth, and has good error tolerances.

© 2004 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.0250) Integrated optics : Optoelectronics
(130.1750) Integrated optics : Components
(130.3120) Integrated optics : Integrated optics devices
(250.0250) Optoelectronics : Optoelectronics
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.5300) Optoelectronics : Photonic integrated circuits

History
Original Manuscript: March 3, 2004
Revised Manuscript: July 20, 2004
Manuscript Accepted: August 17, 2004
Published: December 20, 2004

Citation
David M. Mackie and Andrew W. Lee, "Slotted multimode-interference devices," Appl. Opt. 43, 6609-6619 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-36-6609


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]
  2. M. Blahut, A. Opilski, “Multimode interference structures-new way of passive elements technology for photonics,” Opto-Electron. Rev. 9, 293–300 (2001).
  3. D. M. Mackie, T. J. Tayag, “Modeling of self-imaging integrated optical power splitters,” in Proceedings of the Fifth Biennial DoD Photonics Conference, L. D. Pierce, ed. (Armed Forces Communications and Electronics Association, Fairfax, Va., 1996), pp. 59–64.
  4. E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, J. C. Brock, “Analog signal splitting and amplification for optically-controlled phased-array antennas,” in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Willner, S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 209–212.
  5. E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, “Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution,” in Optical Technology for Microwave Applications VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 89–96 (1997). [CrossRef]
  6. B. Lee, E. Kim, H. K. Kim, D. M. Mackie, C. M. Fitzpatrick, “Integrated-optic, lossless beamsplitters,” in Radio Frequency Photonic Devices and Systems, A. R. Pirich, A. P. Goutzoulis, P. L. Repak, eds., Proc. SPIE4112, 101–108 (2000). [CrossRef]
  7. L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, R. P. Leavitt, “Monolithic integration of 1.3-μm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters,” IEEE Photon. Technol. Lett. 12, 657–659 (2000). [CrossRef]
  8. H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, M.-H. Wang, “Compact and economical MMI optical power splitter for optical communication,” Chinese J. Semicond. 21, 966–969 (2000).
  9. D. M. Mackie, H. K. Kim, C. M. Fitzpatrick, “Integrated, optically-pumped, lossless splitters: progress and challenges,” presented at the 22nd Army Science Conference, Baltimore, Md., 11–13 December 2000.
  10. D. M. Mackie, “End-pumped waveguide optical splitter-amplifiers based on self-imaging,” U.S. patent6,178,276 (23January2001).
  11. M. R. Paiam, C. F. Janz, R. I. MacDonald, J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photonics Technol. Lett. 7, 1180–1182 (1995). [CrossRef]
  12. K. C. Lin, W. Y. Lee, “Guided-wave 1.3/1.55-μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32, 1259–1261 (1996). [CrossRef]
  13. D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, R. P. Leavitt, “Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides,” in Proceedings of the Eleventh National Conference on Undergraduate Research (University of North Carolina, Asheville, N.C., 1997), Vol. III, pp. 1215–1219.
  14. D. M. Mackie, “Self-imaging waveguide optical polarization or wavelength splitters,” U.S. patent5,838,842 (17November1998).
  15. D. M. Mackie, “Self-imaging waveguide optical polarization or wavelength splitters,” U.S. patent5,852,691 (22December1998).
  16. T. Tayag, T. Batchman, “Self-imaging waveguide devices for wavelength division multiplexing applications,” U.S. patent5,862,288 (19January1999).
  17. B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, X. Wang, “Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photonics Technol. Lett. 11, 575–577 (1999). [CrossRef]
  18. G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, S. Kim, “A multimode-interferenced electrooptic TE/TM mode splitter,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, Piscataway, N.J., 1999), Vol. 2, pp. 565–566.
  19. D. M. Mackie, T. J. Tayag, T. E. Batchman, “Polarization separation/combination based on self-imaging,” Opt. Eng. 40, 2265–2272 (2001). [CrossRef]
  20. B. M. A. Rahman, N. Somasiri, C. Themistos, K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73, 613–618 (2001). [CrossRef]
  21. S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “Design of a 2*2 MMI MZI SOI electro-optic switch covering C band and L band,” Microwave Opt. Technol. Lett. 33, 262–265 (2002). [CrossRef]
  22. W.-C. Chang, H.-J. Wang, H.-H. Lin, S.-W. Weng, P.-S. Tsai, “A novel multimode interference optoelectronic AND gate with partial index-modulation regions,” in 2001 International Symposium on Electron Devices for Microwave and Optoelectronic Applications (IEEE, Piscataway, N.J., 2001), pp. 335–337.
  23. S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “An SOI X-crossing optical switch,” in Solar and Switching Materials, C. M. Lampert, C.-G. Granqvist, K. L. Lewis, eds., Proc. SPIE4458, 269–277 (2001). [CrossRef]
  24. S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside,” in Materials and Devices for Photonic Crystals II, M. N. Armenise, ed., Proc. SPIE4453, 162–169 (2001).
  25. C.-H. Lien, H.-H. Lin, S.-W. Weng, H.-J. Wang, W.-C. Chang, “A compact photonic switch based on multimode interference with partial index-modulation regions,” Microwave Opt. Technol. Lett. 33, 174–176 (2002). [CrossRef]
  26. L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10, 1843–1850 (1992). [CrossRef]
  27. K. C. Lin, W. Y. Lee, “A dual-channel wavelength multiplexer/demultiplexer based on the restricted-resonance self-imaging effect,” Fiber Integr. Opt. 16, 73–81 (1997). [CrossRef]
  28. D. S. Levy, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photonics Technol. Lett. 10, 96–98 (1998). [CrossRef]
  29. D. S. Levy, R. Scarmozzino, R. M. Osgood, “Length reduction of tapered N × N MMI devices,” IEEE Photonics Technol. Lett. 10, 830–832 (1998). [CrossRef]
  30. D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. 11, 1009–1011 (1999). [CrossRef]
  31. H. Wei, J. Yu, Z. Liu, X. Zhang, W. Shi, C. Fang, “Fabrication of 2 × 2 tapered multimode interference coupler,” Electron. Lett. 36, 1618–1619 (2000). [CrossRef]
  32. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003). [CrossRef]
  33. G. A. Fish, L. A. Coldren, S. P. DenBaars, “Compact InGaAsP/InP 1 × 2 optical switch based on carrier induced suppression of modal interference,” Electron. Lett. 33, 1898–1899 (1997). [CrossRef]
  34. P. Zhao, J. Chrostowski, W. J. Bock, “Novel multimode coupler switch,” Microwave Opt. Technol. Lett. 17, 1–7 (1998). [CrossRef]
  35. H. H. El-Refaei, D. A. M. Khalil, “Design of strip-loaded weak-guiding multimode interference structure for an optical router,” IEEE J. Quantum Electron. 34, 2286–2290 (1998). [CrossRef]
  36. S. Nagai, G. Morishima, M. Yagi, K. Utaka, “InGaAsP/InP multi-mode interference photonic switches for monolithic photonic integrated circuits,” Jpn. J. Appl. Phys. 38, pt. 1, 1269–1272 (1999). [CrossRef]
  37. S. Nagai, G. Morishima, H. Inayoshi, K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20, 675–681 (2002). [CrossRef]
  38. K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, H. Inoue, “InGaAsP/InP optical switches using carrier induced refractive index change,” Appl. Phys. Lett. 50, 141–142 (1987). [CrossRef]
  39. F. Ito, M. Matsuura, T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55 μm,” IEEE J. Quantum Electron. 25, 1677–1681 (1989). [CrossRef]
  40. J. C. Campbell, T. Li, “Electro-optic multimode waveguide modulator or switch,” J. Appl. Phys. 50, 6149–6154 (1979). [CrossRef]
  41. M. P. Earnshaw, D. W. E. Allsopp, “Semiconductor space switches based on multimode interference couplers,” J. Lightwave Technol. 20, 643–650 (2002). [CrossRef]
  42. D. M. Mackie, A. W. Lee, “Slotted multimode interference devices for reduced-length integrated optical wavelength or polarization splitters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, Md., 1–6 June 2003.
  43. T. J. Tayag, D. M. Mackie, G. W. Bryant, “A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters,” IEEE Photonics Technol. Lett. 7, 896–898 (1995). [CrossRef]
  44. T. J. Tayag, “Easily manufacturable optical self-imaging waveguide,” U.S. patent5,640,474 (17June1997).
  45. M. Bachmann, P. A. Besse, H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. 33, 3905–3911 (1994). [CrossRef] [PubMed]
  46. A. J. P. Hnatiw, R. I. MacDonald, P. S. Apte, W. D. MacDonald, “A silica based integrated optic microwave power sensor,” in Applications of Photonic Technology. 2. Communications, Sensing, Materials, and Signal Processing, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 831–836.
  47. C. Aramburu, C. Vazquez, M. Galarza, M. Lopez-Amo, J. M. S. Pena, “Mode filter using multimode interference principles: design and tolerance analysis for accessing waveguides supporting two guided modes,” Microwave Opt. Technol. Lett. 26, 140–142 (2000). [CrossRef]
  48. T. J. Tayag, M. B. Steer, J. F. Harvey, A. B. Yakovlev, J. Davis, “Spatial power splitting and combining based on the Talbot effect,” IEEE Microwave Wireless Components Lett. 12, 9–11 (2002). [CrossRef]
  49. P. Xi, C. Zhou, E. Dai, L. Liu, “Novel method for ultrashort laser pulse-width measurement based on the self-diffraction effect,” Opt. Express 10, 1099–1104 (2002), http://www.opticsexpress.org . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited