OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 43, Iss. 36 — Dec. 20, 2004
  • pp: 6639–6647

Polarization smoothing in a convergent beam

David H. Munro, Shamasundar N. Dixit, A. Bruce Langdon, and John R. Murray  »View Author Affiliations


Applied Optics, Vol. 43, Issue 36, pp. 6639-6647 (2004)
http://dx.doi.org/10.1364/AO.43.006639


View Full Text Article

Enhanced HTML    Acrobat PDF (529 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A birefringent wedge in a collimated 351-nm beam provides polarization smoothing at the Omega laser facility and provided it for the Nova laser. At the National Ignition Facility, the best place to put such an optic is after the final focus lens. In a converging beam, a flat birefringent plate can closely mimic the polarization-smoothing action of a wedge. In this new design the flat plate is nearly a Z-cut crystal; for the wedges, the optical axis of the crystal lies far from the plate normal.

© 2004 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(230.5440) Optical devices : Polarization-selective devices

History
Original Manuscript: September 29, 2003
Revised Manuscript: April 8, 2004
Manuscript Accepted: September 22, 2004
Published: December 20, 2004

Citation
David H. Munro, Shamasundar N. Dixit, A. Bruce Langdon, and John R. Murray, "Polarization smoothing in a convergent beam," Appl. Opt. 43, 6639-6647 (2004)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-36-6639


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Laboratory for Laser Energetics, “Phase conversion using distributed polarization rotation,” Laboratory for Laser Energetics Rev. 45, National Technical Information Service Doc. DOE/DP40200-149 (Laboratory for Laser Energetics, Rochester, N.Y., 1990).
  2. K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992). [CrossRef]
  3. K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993). [CrossRef]
  4. S. Pau, S. N. Dixit, D. Eimerl, “Electro-optic control of correlations in speckle statistics,” J. Opt. Soc. Am. B 11, 1498–1503 (1994). [CrossRef]
  5. E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998). [CrossRef]
  6. T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999). [CrossRef]
  7. J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001). [CrossRef] [PubMed]
  8. S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001). [CrossRef]
  9. J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000). [CrossRef]
  10. J. P. McGuire, R. A. Chipman, “Analysis of spatial pseudodepolarizers in imaging systems,” Opt. Eng. 29, 1478–1484 (1990). [CrossRef]
  11. M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970), pp. 694–701.
  12. E. E. Wahlstrom, Optical Crystallography, 5th ed. (Wiley, New York, 1979), Chap. 10, pp. 242–263.
  13. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989). [CrossRef]
  14. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, New York, 1984), pp. 9–76.
  15. C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995). [CrossRef]
  16. N. Zaitseva, L. Carman, “Rapid growth of KDP-type crystals,” Prog. Cryst. Growth Charact. Mater. 43, 1–118 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited